
298446
Edition 01

Rexroth WinPCL 06VRS

Operating and Programming Guide

Industrial
Hydraulics

Electric Drives
and Controls

Linear Motion and
Assembly Technologies Pneumatics

Service
Automation

Mobile
Hydraulics

About this Documentation WinPCL 06VRS

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Rexroth WinPCL 06VRS

Operating and Programming Guide

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Document Number, 120-0401-B308-01/EN

This documentation describes the operating and programming interface
WinPCL.

Description Release
Date

Notes

120-0401-B308-01/EN 07/03 First Edition

 2003 Bosch Rexroth AG

Copying this document, giving it to others and the use or communication
of the contents thereof without express authority, are forbidden. Offenders
are liable for the payment of damages. All rights are reserved in the event
of the grant of a patent or the registration of a utility model or design
(DIN 34-1).

The specified data is for product description purposes only and may not
be deemed to be guaranteed unless expressly confirmed in the contract.
All rights are reserved with respect to the content of this documentation
and the availability of the product.

Bosch Rexroth AG
Bgm.-Dr.-Nebel-Str. 2 • D-97816 Lohr a. Main

Telephone +49 (0)93 52/40-0 • Tx 68 94 21 • Fax +49 (0)93 52/40-48 85

http://www.boschrexroth.com/

Dept. EPY (NH)

This document has been printed on chlorine-free bleached paper.

Title

Type of Documentation

Document Typecode

Internal File Reference

Purpose of Documentation

Record of Revisions

Copyright

Validity

Published by

Note

WinPCL 06VRS Contents I

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Contents

1 Preliminary Remarks 1-1

1.1 Contents of this Documentation.. 1-1

1.2 Further Documentation ... 1-2

2 Important Directions for Use 2-1

2.1 Appropriate Use .. 2-1

Introduction .. 2-1

Areas of Use and Application... 2-2

2.2 Inappropriate Use.. 2-2

2.3 Delivery Stipulations for Computer Programs... 2-3

3 Safety Instructions for Electric Drives and Controls 3-1

3.1 Introduction ... 3-1

3.2 Explanations.. 3-1

3.3 Hazards by Improper Use ... 3-2

3.4 General Information .. 3-3

3.5 Protection Against Contact with Electrical Parts... 3-4

3.6 Protection Against Electric Shock by Protective Low Voltage (PELV) ... 3-5

3.7 Protection Against Dangerous Movements .. 3-5

3.8 Protection Against Magnetic and Electromagnetic Fields During Operation and
Mounting ... 3-7

3.9 Protection Against Contact with Hot Parts .. 3-8

3.10 Protection During Handling and Mounting .. 3-8

3.11 Battery Safety.. 3-9

3.12 Protection Against Pressurized Systems.. 3-9

4 WinPCL 4-1

4.1 Main Menu Line... 4-1

4.2 File... 4-1

New.. 4-2

Open .. 4-3

Selecting the Current Control... 4-4

Selecting the Variant for a Control "xx".. 4-5

Save ... 4-5

Save as .. 4-6

Save all .. 4-6

Properties... 4-6

Print.. 4-9

Archive ... 4-22

II Contents WinPCL 06VRS

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Import ... 4-27

Export... 4-27

Exit ... 4-28

4.3 Edit .. 4-29

Cut <Ctrl>+<X>.. 4-29

Copy <Ctrl>+<C>... 4-30

Insert <Ctrl>+<V>... 4-30

Delete .. 4-30

Find <Ctrl>+<F>... 4-30

Find Next <Ctrl>+<R>.. 4-31

Replace <Ctrl>+<H> .. 4-31

Search in Compound ... 4-32

4.4 View... 4-33

Project Navigator ... 4-34

Cross Reference List (and Cross Reference Help) ... 4-37

Import <Ctrl>+<F2>.. 4-45

4.5 Compiler .. 4-47

Selection of the Current Resource... 4-48

4.6 Start... 4-49

Download "xx" in Control "yy" <Ctrl>+<F9>... 4-50

Save PLC Memory... 4-51

Display of Variable Values ... 4-51

Reset PLC.. 4-53

Variable Values.. 4-53

Force <Shift>+<F8>... 4-56

Status ARRAYs / Structures<Shift>+<F3> .. 4-57

4.7 Tools ... 4-59

Options... 4-60

PLC Information ... 4-69

Memory Requirements for Compound... 4-71

Event Display ... 4-72

Display of System Errors ... 4-73

Miniature Control Panels.. 4-74

Diagnosis, Module Assignment ... 4-75

Password ... 4-88

Fieldbus Configuration ... 4-89

Logic Analysis .. 4-92

File-File Comparison.. 4-93

4.8 Window ... 4-98

Close .. 4-99

Close All ... 4-99

Cascade... 4-99

Tile Horizontally.. 4-100

Tile Vertically.. 4-101

Minimize All Windows .. 4-101

List of Windows.. 4-101

WinPCL 06VRS Contents III

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

4.9 ? Help.. 4-102

Help <F1> .. 4-103

Help Topics (Contents & Index)... 4-104

Special ... 4-104

Internals ... 4-104

Service ... 4-105

Info About WinPCL .. 4-105

Info ... 4-106

Help on a Particular Error <Ctrl>+<F1>... 4-106

Help on Declaration <Shift>+<F1> .. 4-107

4.10 Miscellaneous ... 4-108

Language Conversion.. 4-108

Remote Programming.. 4-109

User Management, WinPCL Rights, Remote Programming ... 4-112

4.11 Keys and Key Combinations... 4-113

F Keys and Their Alt / Ctrl / Shift Combinations .. 4-114

Alt-Key Combinations .. 4-115

Ctrl-Key Combinations ... 4-117

4.12 Pictograms .. 4-118

5 Declaration Editors 5-1

5.1 General Notes on the Declaration Editors .. 5-1

5.2 Structure of the Declaration Part... 5-2

Editing Features, Varying Font Color in the Declaration Editor ... 5-3

Declaration Footer Commands.. 5-4

Status Display in the Declaration Editor .. 5-9

Declaration Editor Options ... 5-10

Pop-up Menu, Declaration Editor <Shift>+<F10>.. 5-11

Block Commands, Declaration Editor .. 5-12

Search and Replace, Declaration Editor.. 5-13

Finding and Deleting Unused Declarations ... 5-13

Cross Reference List, Declaration Editor... 5-14

Documentation, Declaration... 5-14

5.3 Declaration, Resource... 5-15

Areas in the Declaration Editor (Resource) ... 5-15

Structure of the Declaration Lines ... 5-16

Declaration Footer Commands, Resource Level... 5-17

Other Keys and Key Combinations.. 5-17

Structure of the Declaration Part of a Resource (Example) .. 5-17

5.4 Declaration, Program .. 5-18

Areas in the Declaration Editor (Program)... 5-18

Structure of the Declaration Lines ... 5-19

Declaration Footer Commands, Program Level .. 5-20

Other Keys and Key Combinations.. 5-20

Structure of the Declaration Part of a Program (Example) .. 5-20

IV Contents WinPCL 06VRS

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

5.5 Declaration, Function Block .. 5-21

Areas in the Declaration Editor (Function Block)... 5-21

Structure of the Declaration Lines ... 5-21

Declaration Footer Commands, Function Block Level .. 5-22

Other Keys and Key Combinations.. 5-22

5.6 Declaration, Function .. 5-23

Areas in the Declaration Editor (Function)... 5-23

Structure of the Declaration Lines ... 5-23

Declaration Footer Commands, Function Level .. 5-24

Other Keys and Key Combinations.. 5-24

Structure of the Declaration Part of a Function (Example) .. 5-24

5.7 Declaration of Structures (STRUCT) .. 5-25

Structure of the Declaration of Structures (Example) .. 5-25

Declaration Footer Command, Structure ... 5-25

Other Keys and Key Combinations.. 5-25

Pop-up Menu, Structure Editor <Shift>+<F10> ... 5-26

5.8 Declaration of ARRAYs... 5-27

Structure of the Declaration of ARRAYs (Example) .. 5-27

Declaration Footer Command, ARRAYs ... 5-28

Other Keys and Key Combinations.. 5-28

Pop-up Menu - ARRAY / Editor <Shift>+<F10> .. 5-28

5.9 Limitation of the Declaration of Function Blocks in the Retain Area... 5-29

6 Instruction List Editor 6-1

6.1 General Notes on the Instruction List Editor ... 6-1

6.2 Structure of an Instruction List Line .. 6-1

Selection Window, Operators .. 6-2

Selection Window, Functions... 6-3

Selection Window, Instances of Function Blocks .. 6-4

Selection Window, SFCs ... 6-5

Selection Window, Labels.. 6-6

Selection Window, Variables ... 6-7

Selection Window, Absolute Addressed Variables.. 6-8

6.3 Editing Features, Varying Color in the IL Editor.. 6-9

6.4 Options, IL Editor .. 6-11

6.5 Status Display in the IL Editor ... 6-12

6.6 Online Editing in the Instruction List.. 6-12

Edge Evaluation in the Instruction List... 6-16

6.7 Pop-up Menu, IL Editor <Shift>+<F10> .. 6-19

6.8 Block Commands, IL Editor .. 6-20

6.9 Search and Replace, IL Editor .. 6-21

6.10 Cross Reference List, IL Editor ... 6-21

6.11 Documentation, IL Editor... 6-22

6.12 Instructions of the IL, Table Overview... 6-23

WinPCL 06VRS Contents V

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

6.13 Instructions and Approved Data Types... 6-24

Loading and Storing Operations .. 6-24

Set and Reset Commands (Bit Operands Only).. 6-25

Logic Instructions ... 6-26

Jumps, Calls, Return (Conditional and Unconditional) .. 6-29

Arithmetic Instructions.. 6-32

Comparators .. 6-38

7 Ladder Diagram Editor 7-1

7.1 General Notes on the Ladder Diagram Editor .. 7-1

7.2 Structure of a Ladder Diagram.. 7-1

7.3 Editing Ladder Diagrams .. 7-2

Selection Window, Operators .. 7-4

Selection Window, Functions... 7-5

Selection Window, Instances of Function blocks... 7-6

Selection Window, Label.. 7-7

Selection Window, SFCs ... 7-8

Selection Window, Variables ... 7-9

Selection Window, Absolute Addressed Variables.. 7-10

7.4 Deletion in the Ladder Diagram .. 7-11

7.5 Editing Features, Varying Color in the Ladder Diagram Editor... 7-12

Entry of a Simple Ladder Diagram... 7-14

Subsequent Modifications and Extensions in the Ladder Diagram 7-16

Entry of a Ladder Diagram with Additional Symbols ... 7-18

Edge Contacts and Edge Coils in the Ladder Diagram ... 7-20

Operators in the Ladder Diagram .. 7-23

Functions in the Ladder Diagram... 7-25

Function Blocks in the Ladder Diagram... 7-27

7.6 Options, Ladder Diagram Editor ... 7-29

7.7 Status Display in the Ladder Diagram Editor .. 7-30

7.8 Online Editing in the Ladder Diagram... 7-31

7.9 Pop-up Menu, LD Editor <Shift>+<F10> .. 7-34

7.10 Block Commands, LD Editor ... 7-35

7.11 Search and Replace, Ladder Diagram Editor ... 7-36

7.12 Cross Reference List, LD Editor ... 7-36

7.13 Documentation, Ladder Diagram Editor.. 7-37

8 SFC Editor 8-1

8.1 Basic Sequential Function Chart Elements (SFC Elements).. 8-1

Steps .. 8-1

Transitions.. 8-3

Oriented Lines.. 8-4

Alternative SFCs .. 8-5

Parallel SFCs ... 8-6

Execution Rules of the Sequential Function Chart .. 8-7

VI Contents WinPCL 06VRS

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

8.2 Entering SFCs in the SFC Editor .. 8-9

Opening an SFC in the SFC List ... 8-9

Program Example of the "Scara" SFC... 8-10

Selection Window, Absolute Addressed Variables.. 8-17

Viewing the SFC in the SFC List ... 8-18

Entry of the Sequence for Execution in View / Implementation... 8-19

Insertion of Steps, Transitions, Branches and Junctions... 8-21

Opening Branches ... 8-25

Deletion of Steps, Transitions and Branches... 8-25

Preserving Deleted Steps, Transitions and Actions; Re-use... 8-28

8.3 Editing Features, Varying Color in the SFC Editor ... 8-29

8.4 Status Display in the Sequential Function Chart .. 8-30

8.5 Options of the Sequential Function Chart ... 8-31

8.6 Pop-up Menu, Sequential Function Chart <Shift>+<F10>.. 8-32

8.7 Block Commands, Sequential Function Chart .. 8-32

8.8 Search and Replace, Sequential Function Chart.. 8-33

8.9 Cross Reference List, Sequential Function Chart... 8-34

8.10 Documentation, Sequential Function Chart .. 8-35

9 Action Block Editor 9-1

9.1 Action Blocks and Their Operating Principle... 9-1

Structure of an Action Block .. 9-2

9.2 Action Block Editing .. 9-3

Entering an Action Block, Placing it Behind and Before .. 9-3

Editing Features, Varying Color in the Action Block Editor.. 9-8

Deletion of an Action Block.. 9-8

Text Modifications in an Action Block .. 9-9

Multiple Use of Actions .. 9-9

Detail Level of the Action Block Editor... 9-10

Actions in the SFC List... 9-10

System Data for Actions and Action Blocks .. 9-11

General Method of Action Execution ... 9-12

Execution by Action_Control.. 9-14

Action Qualifiers and their Execution... 9-15

9.3 Setup Support on Action Block Level.. 9-24

Forcing of Actions with System Support .. 9-24

Status Display in the Action Block Editor... 9-27

9.4 Options, Action Block Editor ... 9-28

9.5 Pop-up Menu, Action Block Editor <Shift>+<F10> ... 9-29

9.6 Block Commands, Action Blocks .. 9-29

9.7 Search and Replace, Action Block Editor ... 9-30

9.8 Cross Reference List, Action Block Editor .. 9-31

9.9 Documentation, Action Block Editor.. 9-32

WinPCL 06VRS Contents VII

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

10 I/O Editor 10-1

10.1 General Notes on the I/O Editor.. 10-1

10.2 Structure of an I/O Editor .. 10-1

I/O Table .. 10-1

Structure of the Input Mask in the I/O Editor.. 10-3

Check for Use of the I/O Areas in Resource and Programs.. 10-5

Logic Address Assignment by Example of a BT Bus .. 10-6

10.3 Special Functions of the I/O Editor ... 10-8

Shifting I/O Addresses ... 10-8

Applying Configuration Data from CMD to the I/O Editor .. 10-10

10.4 Status Display, I/O Editor .. 10-19

10.5 Options, I/O Editor... 10-19

10.6 Pop-up Menu, I/O Editor <Shift>+<F10> .. 10-20

11 Data Types in WinPCL 11-1

11.1 General Agreements ... 11-1

Character Set ... 11-1

External Representation of Data.. 11-2

11.2 Data Types and Initial Values ... 11-4

11.3 Standard Data Types .. 11-5

Elementary Data Types, Value Ranges and Initial Values .. 11-5

Location and size prefix features for directly represented variables...................................... 11-6

Extensions to Elementary Data Types... 11-8

11.4 Firmware Data Types.. 11-14

Serial Interfaces, Data Types... 11-14

PROFIBUS DP, Data Types .. 11-17

ASIM, Data Types.. 11-19

Sequential Function Chart, Data Types... 11-20

11.5 User Data Types ... 11-23

12 Functions in WinPCL 12-1

12.1 Functions, General Information... 12-1

12.2 Standard Functions ... 12-2

Functions for Type and Code Conversion ... 12-3

Numeric Functions ... 12-28

Functions for Time-to-Integer Conversion ... 12-34

INTEGER-to-TIME Conversion.. 12-36

Bit String Functions.. 12-38

Character String Functions .. 12-46

12.3 Firmware Functions... 12-54

Analog Module RMC12.2.-2E-1A, Functions... 12-54

PROFIBUS DP, Functions ... 12-62

BT-Bus, Functions ... 12-65

ASI Bus, Functions .. 12-67

INTERBUS, Function ... 12-74

VIII Contents WinPCL 06VRS

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

12.4 User Functions .. 12-76

Import Rules for Functions... 12-76

Program Example for User Function SELECT_INT .. 12-77

13 Function Blocks in WinPCL 13-1

13.1 Function Blocks, General Information... 13-1

13.2 Standard Function Blocks ... 13-2

Bistable Elements .. 13-3

Edge Evaluation for Rising and Falling Edges... 13-5

Collecting / Splitting Bit Strings.. 13-6

Up-Down Counter .. 13-11

Time Stages for Pulses, On-Delay and Off-Delay Timer Function Blocks 13-18

Function Blocks for Date and Time.. 13-22

13.3 Firmware Function Blocks... 13-25

INTERBUS, Function Blocks ... 13-27

PCP Function Blocks for the Parameter Channel of the INTERBUS 13-38

PROFIBUS DP, Function Blocks ... 13-57

ASI Bus, Function Block with Data Type ... 13-60

Serial Interfaces, Function Blocks ... 13-62

Function Blocks for the HMI Interface (GUI_SK16) ... 13-75

Miniature Control Panels, Function Blocks for Data Exchange with the PLC 13-78

MotionControl Extension of the PLC.. 13-80

13.4 User Function Blocks .. 13-93

Import Rules, Function Blocks ... 13-93

13.5 Limitation of the Declaration of Function Blocks in the Retain Area... 13-94

14 Programs and Resources in WinPCL 14-1

14.1 Programs, General Information... 14-1

14.2 Resources ... 14-4

14.3 Tasks, Time Diagrams of the Execution ... 14-6

14.4 Management of Global and Local Data .. 14-9

Local Data .. 14-9

Global Data .. 14-10

Absolute Data .. 14-11

14.5 Start of the PLC... 14-12

14.6 Initialization of the Data... 14-13

15 Error Management 15-1

15.1 S#ErrorFlg... 15-1

15.2 Error Management Sequence... 15-2

15.3 Error Management in Case of Multiple Errors .. 15-4

15.4 Error Management in User Files ... 15-4

15.5 S#ErrorTyp.. 15-5

15.6 Errors in Functions and Function Blocks .. 15-5

15.7 Errors in Operations and IL Instructions ... 15-14

15.8 Errors with REAL Operations in Borderline Cases ... 15-16

WinPCL 06VRS Contents IX

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

15.9 Sequential Function Chart Errors (SFC) ... 15-17

15.10 S#ErrorNr .. 15-18

16 Glossary 16-1

17 List of Figures 17-1

18 Index 18-1

19 Service & Support 19-1

19.1 Helpdesk ... 19-1

19.2 Service-Hotline.. 19-1

19.3 Internet .. 19-1

19.4 Vor der Kontaktaufnahme... - Before contacting us.. 19-1

19.5 Kundenbetreuungsstellen - Sales & Service Facilities ... 19-2

X Contents WinPCL 06VRS

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL 06VRS Preliminary Remarks 1-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

1 Preliminary Remarks

1.1 Contents of this Documentation

This documentation contains the description of the Windows
programming system for the programmable logic control (PLC) offered by
Bosch Rexroth.

It is also available as online help in the programming system, if you
choose menu item Help ? \ Help Topics (Contents & Index).

The individual menu and submenu items are described in chapter
"WinPCL".

The chapters

• Declaration Editors

• Declaration Editor, Resource

• Declaration Editor, Program

• Declaration Editor, Function Block

• Declaration Editor, Function

• Declaration Editor, ARRAY

• Declaration Editor, Structure

• Instruction List Editor

• Ladder Diagram Editor

• Sequential Function Chart Editor (SFC)

• Action Block Editor and

• IO Editor

describe the editors and lists belonging to the system.

The chapters

• Data Types in WinPCL

• Functions in WinPCL

• Function Blocks in WinPCL

• Programs and Resources in WinPCL

are subdivided into standard, firmware and user elements. Here you can
find a description for each standard and firmware element that is available
as <F1> help if you enter the name of the element as search criterion. For
user elements you can find the construction possibilities.

Chapter "Programs and Resources in WinPCL" contains explanations of
tasks and their execution.

Chapter "Troubleshooting in WinPCL" describes the mechanism for error
identification and transfer. Errors can be identified and evaluated for
standard, firmware and user elements if you work with the error variables
S#ErrorFlg, S#ErrorTyp and S#ErrorNr.

1-2 Preliminary Remarks WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

1.2 Further Documentation

Number Title Contents Document Typecode

/1/ MTC200 and ISP200 see
"Systems and Controls in the
Product Catalog"

– Application Areas
– User advantages
– System kit MTC200
– Control components
– Visualization and
 control terminals
– I/O units
– Drive electronics and motors

Current product catalog on our
webside
http://info.indramat.de/products/pr
od_catalog/ecat/default.asp

Hardcopy and English version in
preparation.

/2/ Programming with IndraStep
SFCs with Mode Control and
Diagnosis

– SFC modes
– IndraStep modes
– SFC diagnosis

DOK-CONTRL-
SPS*ISTEP02-AW..-EN-P

/3/ SyConPB
System Configurator for
PROFIBUS

– PROFIBUS Configuration
– Data exchange
– Menus SyConPB
– Troubleshooting
– FBs for bus control

DOK-CONTRL-
SYCON****-DP-AW..-EN-P

/4/ SyConDN
System Configurator for
DeviceNet

– DeviceNet configuration
– Data exchange
– Menus SyConDN
– Troubleshooting

DOK-CONTRL-
SYCON****-DN-AW..-EN-P

/5/ CMD
System Configurator for
INTERBUS

– INTERBUS configuration
– Data exchange
– Menus CMD
– Troubleshooting

DOK-CONTRL-
IBS*CMD****-AW..-EN-P

/6/ INTERBUS
Diagnostic Primer

Controller board,
Generation 4

Phönix Contact
IBS SYS DIAG DSC UM
Rev. B
Art.-No. 2747280

/7/ WinHMI

System Configurator
SYSCON

– Hardware Configuration of
 controls, single and as
 compound

DOK-CONTRL-
INS*BOF*V22-AW...-EN-P
DOK-CONTRL-
SETUP***-V22-AW..-EN-P

Online Help in
\..\BasicData\Help\
Syscon_en.hlp

PC Compound – Description of the
 activities when connecting
 a PC compound
– Precondition for
 remote programming

DOK-CONTRL-
PC**NET*V22-AW..-EN-P

/8/ Screenmanager 05VRS
Project planning tool to program
miniature control panels
Operating and Programming
Guide

– Miniature control panels DOK-SUPPL*-
SCM*PROG*V5-AW..-EN-P

/9/ Screenmanager 04VRS
Application Manual

– Miniature control panels DOK-SUPPL*-
SCM*BEDIEN*-AW..-EN-P
In preparation.

Fig. 1-1: Further documentation

WinPCL 06VRS Important Directions for Use 2-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

2 Important Directions for Use

2.1 Appropriate Use

Introduction
Bosch Rexroth products represent state-of-the-art developments and
manufacturing. They are tested prior to delivery to ensure operating safety
and reliability.

The products may only be used in the manner that is defined as
appropriate. If they are used in an inappropriate manner, then situations
can develop that may lead to property damage or injury to personnel.

Note: Bosch Rexroth, as manufacturer, is not liable for any damages
resulting from inappropriate use. In such cases, the guarantee
and the right to payment of damages resulting from
inappropriate use are forfeited. The user alone carries all
responsibility of the risks.

Before using Bosch Rexroth products, make sure that all the pre-
requisites for appropriate use of the products are satisfied:

• Personnel that in any way, shape or form uses our products must first
read and understand the relevant safety instructions and be familiar
with appropriate use.

• If the product takes the form of hardware, then they must remain in
their original state, in other words, no structural changes are permitted.
It is not permitted to decompile software products or alter source
codes.

• Do not mount damaged or faulty products or use them in operation.

• Make sure that the products have been installed in the manner
described in the relevant documentation.

2-2 Important Directions for Use WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Areas of Use and Application
The user and programming interface WinPCL is a development
environment to create application programs for programmable logic
controls (PLC) of Bosch Rexroth. WinPCL is designed for use in the
following cases:

• Commissioning of programmable logic controls,

• Programming of programmable logic controls,

• Support to create diagnosis and mode controls (ProVi, IndraStep).

 Note: Operation is only permitted in the specified configurations and
combinations of components using the software and firmware
as specified in the relevant function descriptions.

2.2 Inappropriate Use

Using the user and programming interface outside of the above-
referenced areas of application or under operating conditions other than
described in the document and the technical data specified is defined as
"inappropriate use".

• WinPCL may not be used if it is subject to operating conditions that
do not meet the above specified ambient conditions.

• Furthermore, WinPCL must not be used for applications Bosch
Rexroth has not specifically released for that intended purpose.
Please note the specifications outlined in the general Safety
Instructions!

WinPCL 06VRS Important Directions for Use 2-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

2.3 Delivery Stipulations for Computer Programs

The copyrights, present and future commercial proprietary rights of all
kinds, as well as all the rights of exploitation to delivered computer
programs -- in equipment or separate from it -- belong exclusively to the
Supplier.

A computer program may only be used in one single piece of equipment.
Exceptions are commissioning software, which are marked with the
designation -COPY at the end. These can be copied freely within the
context of regular product usage by the customer.

Every act exceeding the minimum use outlined in the proprietary rights
requires the consent of the Supplier. If a computer program delivered by
the Supplier is not protected by proprietary rights, then the minimum use
stated in the proprietary rights laws is declared as agreed upon.

If the Orderer transfers a computer program then he must completely
surrender the program carrier and all copies in their entirety to the
Acquiring Party, or these must be erased. A limitation of use
corresponding to these stipulations (1 through 6) must be agreed upon
with the Acquiring Party.

The Supplier will eliminate any fault in the computer program either by a
circumvention of the fault, which is agreeable to the Orderer, or by
delivering a new program.

All documents and information needed to reconstruct a fault must
accompany the notification of a fault in the computer program.

Otherwise, the general delivery stipulations outlined by Rexroth apply.

2-4 Important Directions for Use WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL 06VRS Safety Instructions for Electric Drives and Controls 3-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

3 Safety Instructions for Electric Drives and Controls

3.1 Introduction

Read these instructions before the initial startup of the equipment in order
to eliminate the risk of bodily harm or material damage. Follow these
safety instructions at all times.

Do not attempt to install or start up this equipment without first reading all
documentation provided with the product. Read and understand these
safety instructions and all user documentation of the equipment prior to
working with the equipment at any time. If you do not have the user
documentation for your equipment, contact your local Bosch Rexroth
representative to send this documentation immediately to the person or
persons responsible for the safe operation of this equipment.

If the equipment is resold, rented or transferred or passed on to others,
then these safety instructions must be delivered with the equipment.

WARNING

Improper use of this equipment, failure to follow
the safety instructions in this document or
tampering with the product, including disabling
of safety devices, may result in material
damage, bodily harm, electric shock or even
death!

3.2 Explanations

The safety instructions describe the following degrees of hazard
seriousness in compliance with ANSI Z535. The degree of hazard
seriousness informs about the consequences resulting from non-
compliance with the safety instructions.

Warning symbol with signal
word

Degree of hazard seriousness according
to ANSI

DANGER

Death or severe bodily harm will occur.

WARNING

Death or severe bodily harm may occur.

CAUTION

Bodily harm or material damage may occur.

Fig. 3-1: Hazard classification (according to ANSI Z535)

3-2 Safety Instructions for Electric Drives and Controls WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

3.3 Hazards by Improper Use

DANGER

High voltage and high discharge current!
Danger to life or severe bodily harm by electric
shock!

DANGER

Dangerous movements! Danger to life, severe
bodily harm or material damage by
unintentional motor movements!

WARNING

High electrical voltage due to wrong
connections! Danger to life or bodily harm by
electric shock!

WARNING

Health hazard for persons with heart
pacemakers, metal implants and hearing aids in
proximity to electrical equipment!

CAUTION

Surface of machine housing could be extremely
hot! Danger of injury! Danger of burns!

CAUTION

Risk of injury due to improper handling! Bodily
harm caused by crushing, shearing, cutting and
mechanical shock or incorrect handling of
pressurized systems!

CAUTION

Risk of injury due to incorrect handling of
batteries!

WinPCL 06VRS Safety Instructions for Electric Drives and Controls 3-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

3.4 General Information

• Bosch Rexroth AG is not liable for damages resulting from failure to
observe the warnings provided in this documentation.

• Read the operating, maintenance and safety instructions in your
language before starting up the machine. If you find that you cannot
completely understand the documentation for your product, please ask
your supplier to clarify.

• Proper and correct transport, storage, assembly and installation as
well as care in operation and maintenance are prerequisites for
optimal and safe operation of this equipment.

• Only persons who are trained and qualified for the use and operation
of the equipment may work on this equipment or within its proximity.

• The persons are qualified if they have sufficient knowledge of the
assembly, installation and operation of the equipment as well as an
understanding of all warnings and precautionary measures noted in
these instructions.

• Furthermore, they must be trained, instructed and qualified to
switch electrical circuits and equipment on and off in accordance
with technical safety regulations, to ground them and to mark them
according to the requirements of safe work practices. They must
have adequate safety equipment and be trained in first aid.

• Only use spare parts and accessories approved by the manufacturer.

• Follow all safety regulations and requirements for the specific
application as practiced in the country of use.

• The equipment is designed for installation in industrial machinery.

• The ambient conditions given in the product documentation must be
observed.

• Use only safety features and applications that are clearly and explicitly
approved in the Project Planning Manual.
For example, the following areas of use are not permitted: construction
cranes, elevators used for people or freight, devices and vehicles to
transport people, medical applications, refinery plants, transport of
hazardous goods, nuclear applications, applications sensitive to high
frequency, mining, food processing, control of protection equipment
(also in a machine).

• The information given in the documentation of the product with regard
to the use of the delivered components contains only examples of
applications and suggestions.
The machine and installation manufacturer must

• make sure that the delivered components are suited for his
individual application and check the information given in this
documentation with regard to the use of the components,

• make sure that his application complies with the applicable safety
regulations and standards and carry out the required measures,
modifications and complements.

• Startup of the delivered components is only permitted once it is sure
that the machine or installation in which they are installed complies
with the national regulations, safety specifications and standards of the
application.

• Technical data, connections and operational conditions are specified in
the product documentation and must be followed at all times.

3-4 Safety Instructions for Electric Drives and Controls WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• Operation is only permitted if the national EMC regulations for the
application are met.
The instructions for installation in accordance with EMC requirements
can be found in the documentation "EMC in Drive and Control
Systems".
The machine or installation manufacturer is responsible for
compliance with the limiting values as prescribed in the national
regulations.

3.5 Protection Against Contact with Electrical Parts

Note: This section refers to equipment and drive components with
voltages above 50 Volts.

Touching live parts with voltages of 50 Volts and more with bare hands or
conductive tools or touching ungrounded housings can be dangerous and
cause electric shock. In order to operate electrical equipment, certain
parts must unavoidably have dangerous voltages applied to them.

DANGER

High electrical voltage! Danger to life, severe
bodily harm by electric shock!
⇒ Only those trained and qualified to work with or on

electrical equipment are permitted to operate, maintain
or repair this equipment.

⇒ Follow general construction and safety regulations when
working on high voltage installations.

⇒ Before switching on power the ground wire must be
permanently connected to all electrical units according
to the connection diagram.

⇒ Do not operate electrical equipment at any time, even
for brief measurements or tests, if the ground wire is not
permanently connected to the points of the components
provided for this purpose.

⇒ Before working with electrical parts with voltage higher
than 50 V, the equipment must be disconnected from
the mains voltage or power supply. Make sure the
equipment cannot be switched on again unintended.

⇒ The following should be observed with electrical drive
and filter components:

⇒ Wait five (5) minutes after switching off power to allow
capacitors to discharge before beginning to work.
Measure the voltage on the capacitors before beginning
to work to make sure that the equipment is safe to
touch.

⇒ Never touch the electrical connection points of a
component while power is turned on.

⇒ Install the covers and guards provided with the
equipment properly before switching the equipment on.
Prevent contact with live parts at any time.

⇒ A residual-current-operated protective device (RCD)
must not be used on electric drives! Indirect contact
must be prevented by other means, for example, by an
overcurrent protective device.

⇒ Electrical components with exposed live parts and
uncovered high voltage terminals must be installed in a
protective housing, for example, in a control cabinet.

WinPCL 06VRS Safety Instructions for Electric Drives and Controls 3-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

To be observed with electrical drive and filter components:

DANGER

High electrical voltage on the housing!
High leakage current! Danger to life, danger of
injury by electric shock!
⇒ Connect the electrical equipment, the housings of all

electrical units and motors permanently with the safety
conductor at the ground points before power is
switched on. Look at the connection diagram. This is
even necessary for brief tests.

⇒ Connect the safety conductor of the electrical
equipment always permanently and firmly to the
supply mains. Leakage current exceeds 3.5 mA in
normal operation.

⇒ Use a copper conductor with at least 10 mm² cross
section over its entire course for this safety conductor
connection!

⇒ Prior to startups, even for brief tests, always connect
the protective conductor or connect with ground wire.
Otherwise, high voltages can occur on the housing
that lead to electric shock.

3.6 Protection Against Electric Shock by Protective Low
Voltage (PELV)

All connections and terminals with voltages between 0 and 50 Volts on
Rexroth products are protective low voltages designed in accordance with
international standards on electrical safety.

WARNING

High electrical voltage due to wrong
connections! Danger to life, bodily harm by
electric shock!
⇒ Only connect equipment, electrical components and

cables of the protective low voltage type (PELV =
Protective Extra Low Voltage) to all terminals and
clamps with voltages of 0 to 50 Volts.

⇒ Only electrical circuits may be connected which are
safely isolated against high voltage circuits. Safe
isolation is achieved, for example, with an isolating
transformer, an opto-electronic coupler or when
battery-operated.

3.7 Protection Against Dangerous Movements

Dangerous movements can be caused by faulty control of the connected
motors. Some common examples are:

• improper or wrong wiring of cable connections

• incorrect operation of the equipment components

• wrong input of parameters before operation

• malfunction of sensors, encoders and monitoring devices

• defective components

• software or firmware errors

3-6 Safety Instructions for Electric Drives and Controls WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Dangerous movements can occur immediately after equipment is
switched on or even after an unspecified time of trouble-free operation.

The monitoring in the drive components will normally be sufficient to avoid
faulty operation in the connected drives. Regarding personal safety,
especially the danger of bodily injury and material damage, this alone
cannot be relied upon to ensure complete safety. Until the integrated
monitoring functions become effective, it must be assumed in any case
that faulty drive movements will occur. The extent of faulty drive
movements depends upon the type of control and the state of operation.

DANGER

Dangerous movements! Danger to life, risk of
injury, severe bodily harm or material damage!
⇒ Ensure personal safety by means of qualified and

tested higher-level monitoring devices or measures
integrated in the installation. Unintended machine
motion is possible if monitoring devices are disabled,
bypassed or not activated.

⇒ Pay attention to unintended machine motion or other
malfunction in any mode of operation.

⇒ Keep free and clear of the machine’s range of motion
and moving parts. Possible measures to prevent
people from accidentally entering the machine’s range
of motion:

- use safety fences

- use safety guards

- use protective coverings

- install light curtains or light barriers

⇒ Fences and coverings must be strong enough to
resist maximum possible momentum, especially if
there is a possibility of loose parts flying off.

⇒ Mount the emergency stop switch in the immediate
reach of the operator. Verify that the emergency stop
works before startup. Don’t operate the machine if the
emergency stop is not working.

⇒ Isolate the drive power connection by means of an
emergency stop circuit or use a starting lockout to
prevent unintentional start.

⇒ Make sure that the drives are brought to a safe
standstill before accessing or entering the danger
zone. Safe standstill can be achieved by switching off
the power supply contactor or by safe mechanical
locking of moving parts.

⇒ Secure vertical axes against falling or dropping after
switching off the motor power by, for example:

- mechanically securing the vertical axes

- adding an external braking/ arrester/ clamping
mechanism

- ensuring sufficient equilibration of the vertical axes

The standard equipment motor brake or an external
brake controlled directly by the drive controller are
not sufficient to guarantee personal safety!

WinPCL 06VRS Safety Instructions for Electric Drives and Controls 3-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

⇒ Disconnect electrical power to the equipment using a
master switch and secure the switch against
reconnection for:

- maintenance and repair work

- cleaning of equipment

- long periods of discontinued equipment use

⇒ Prevent the operation of high-frequency, remote
control and radio equipment near electronics circuits
and supply leads. If the use of such equipment cannot
be avoided, verify the system and the installation for
possible malfunctions in all possible positions of
normal use before initial startup. If necessary, perform
a special electromagnetic compatibility (EMC) test on
the installation.

3.8 Protection Against Magnetic and Electromagnetic Fields
During Operation and Mounting

Magnetic and electromagnetic fields generated near current-carrying
conductors and permanent magnets in motors represent a serious health
hazard to persons with heart pacemakers, metal implants and hearing
aids.

WARNING

Health hazard for persons with heart
pacemakers, metal implants and hearing aids in
proximity to electrical equipment!
⇒ Persons with heart pacemakers, hearing aids and

metal implants are not permitted to enter the following
areas:

- Areas in which electrical equipment and parts are
mounted, being operated or started up.

- Areas in which parts of motors with permanent
magnets are being stored, operated, repaired or
mounted.

⇒ If it is necessary for a person with a heart pacemaker
to enter such an area, then a doctor must be
consulted prior to doing so. Heart pacemakers that
are already implanted or will be implanted in the
future, have a considerable variation in their electrical
noise immunity. Therefore there are no rules with
general validity.

⇒ Persons with hearing aids, metal implants or metal
pieces must consult a doctor before they enter the
areas described above. Otherwise, health hazards will
occur.

3-8 Safety Instructions for Electric Drives and Controls WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

3.9 Protection Against Contact with Hot Parts

CAUTION

Housing surfaces could be extremely hot!
Danger of injury! Danger of burns!
⇒ Do not touch housing surfaces near sources of heat!

Danger of burns!
⇒ After switching the equipment off, wait at least ten (10)

minutes to allow it to cool down before touching it.
⇒ Do not touch hot parts of the equipment, such as

housings with integrated heat sinks and resistors.
Danger of burns!

3.10 Protection During Handling and Mounting

Under certain conditions, incorrect handling and mounting of parts and
components may cause injuries.

CAUTION

Risk of injury by incorrect handling! Bodily
harm caused by crushing, shearing, cutting and
mechanical shock!
⇒ Observe general installation and safety instructions

with regard to handling and mounting.
⇒ Use appropriate mounting and transport equipment.
⇒ Take precautions to avoid pinching and crushing.
⇒ Use only appropriate tools. If specified by the product

documentation, special tools must be used.
⇒ Use lifting devices and tools correctly and safely.
⇒ For safe protection wear appropriate protective

clothing, e.g. safety glasses, safety shoes and safety
gloves.

⇒ Never stand under suspended loads.
⇒ Clean up liquids from the floor immediately to prevent

slipping.

WinPCL 06VRS Safety Instructions for Electric Drives and Controls 3-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

3.11 Battery Safety

Batteries contain reactive chemicals in a solid housing. Inappropriate
handling may result in injuries or material damage.

CAUTION

Risk of injury by incorrect handling!
⇒ Do not attempt to reactivate discharged batteries by

heating or other methods (danger of explosion and
cauterization).

⇒ Never charge non-chargeable batteries (danger of
leakage and explosion).

⇒ Never throw batteries into a fire.
⇒ Do not dismantle batteries.
⇒ Do not damage electrical components installed in the

equipment.

Note: Be aware of environmental protection and disposal! The
batteries contained in the product should be considered as
hazardous material for land, air and sea transport in the sense
of the legal requirements (danger of explosion). Dispose
batteries separately from other waste. Observe the legal
requirements in the country of installation.

3.12 Protection Against Pressurized Systems

Certain motors and drive controllers, corresponding to the information in
the respective Project Planning Manual, must be provided with
pressurized media, such as compressed air, hydraulic oil, cooling fluid
and cooling lubricant supplied by external systems. Incorrect handling of
the supply and connections of pressurized systems can lead to injuries or
accidents. In these cases, improper handling of external supply systems,
supply lines or connections can cause injuries or material damage.

 CAUTION

Danger of injury by incorrect handling of
pressurized systems !
⇒ Do not attempt to disassemble, to open or to cut a

pressurized system (danger of explosion).
⇒ Observe the operation instructions of the respective

manufacturer.
⇒ Before disassembling pressurized systems, release

pressure and drain off the fluid or gas.
⇒ Use suitable protective clothing (for example safety

glasses, safety shoes and safety gloves)
⇒ Remove any fluid that has leaked out onto the floor

immediately.

Note: Environmental protection and disposal! The media used in the
operation of the pressurized system equipment may not be
environmentally compatible. Media that are damaging the
environment must be disposed separately from normal waste.
Observe the legal requirements in the country of installation.

3-10 Safety Instructions for Electric Drives and Controls WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Notes

WinPCL 06VRS WinPCL 4-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

4 WinPCL

4.1 Main Menu Line

menue_komplett.bmp

Fig. 4-1: Main menu

Like all other Windows programs, the WinPCL menu bar shows the
following menu items:

• File

• Edit

• View

• Compiler

• Start

• Tools

• Window

• ? Help

• Miscellaneous, as Language Conversion, Remote Programming

The individual menu items contain several submenu items, which are
indicated in gray, which means that they are inactive, when they are not
useful for the moment or not relevant for the user.

4.2 File

menue_Datei.bmp

Fig. 4-2: "File" menu item

The "File" menu item combines all file-related operations.

4-2 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

It covers six groups with commands:

• New creates a new WinPCL file / Open opens an existing file.

• Selecting the Current Control / Selecting the Variant for a Control
"xx"

• Save / Save as with specification of a new name, if necessary with
different properties (password) / Save all saves all edited files.

• Properties of the focussed file, such as information on the file,
passwords and statistics, can be defined and/or edited. It is not
possible to permit "write on inputs" for the file. / Print / Archive

• Import imports text files as DOS_ASCII or WIN_ANSI text / Export
exports the current file.

• Exit of WinPCL

New

menue_Datei_neu.bmp

Fig. 4-3: "File / New" menu item

Using the "File / New" menu items, new resources, programs, function
blocks, functions, structures, and ARRAYs can be created for the chosen
control unit with the variant selected. Programs, function blocks and
functions are also called program organization units (POU). After
selection of the desired POU type, the declaration editor opens for
definition of the interface of the POU or the data type.

Note: The name of a resource may not exceed a length of 32
characters.

If this length is exceeded, excess characters may be cut off
outside of Win PCL.

WinPCL 06VRS WinPCL 4-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Open

menue_öffnen.bmp

Fig. 4-4: "File / Open" menu item

The "File / Open" menu item activates the "Open" dialog for the chosen
control system and with the variant selected.

The name of the desired file can be entered in the input line. Then you
have to choose the respective subset. The example shows a PLC
function block. If you choose the option "Preview" you can see the
interface of the selected file at the right side.

If the file is coded, a window appears to enter the password, with which
you unlock the file for editing or viewing.

(see also Properties of files: download / view / edit.)

freischalten.bmp

Fig. 4-5: Password input box to open coded files

4-4 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selecting the Current Control

auswahl akt Stg.bmp

Fig. 4-6: Selection of current control

The "Selection of current control" dialog window shows the control
systems which were entered with the system configuration.

The number of the control is indicated to the left, the name in the middle
and (in brackets) the type of the control to the right.

The desired control can be selected with the mouse or the cursor keys.

The selected control is marked with a "*".

WinPCL 06VRS WinPCL 4-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selecting the Variant for a Control "xx"

auswahl variante.bmp

Fig. 4-7: Selecting the current variant

Each control has, after having been entered in the system configuration, a
<<basic directory>>, to which the PLC files can be stored.

For technically real projects the number of files increases strongly so that
it is be useful to combine files that belong together in variants.

Variants can contain e.g. different development stages of the same
project.

A new variant can be generated by means of pop-up menus, that open
when you click the right mouse button or press the <Shift>+<F10> keys.

Using the "New" menu item, a variant can be created with the standard
name "new variant", which can be renamed using the "Rename" menu
item.

If files of an earlier variant have to be applied, this variant first has to be
marked with an "*" by using the "Select" command.

Using the "Copy" item of the pop-up menu, the chosen variant is then
copied and used as source for the destination variant. After having
executed the "Copy" command, the same window is opened again for
selecting the destination variant. Already existing files of the destination
variant are overwritten if the names are identical. A warning, however, is
displayed before.

Using the "Remove" menu item, a variant including all files contained
therein can be deleted. The "Empty" menu item keeps the name of the
variant.

Save
The focused file is saved when you use the menu item "Save" <Ctrl>+<S>

The time of the last file modification is entered as file time.

A file which has not been saved since the last modification is marked with
an "*" behind the file name.

4-6 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Save as

speichern als.bmp

Fig. 4-8: "File / Save as" menu item

Using the "Save as" menu item, the focused file is saved under another
name, and/or the "Options" button saves it with other file properties.

Save all
This menu item effects the storage of all currently opened files; changed
files get the file time of the last change, all other files retain their file time.

Properties
The "Properties" menu item serves

• for displaying and modifying file information like name (of the person in
charge), company, department,

info01.bmp

Fig. 4-9: File properties, "File information"

WinPCL 06VRS WinPCL 4-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• for changing file-related passwords, which permit editing and/or
viewing.

info02.bmp

Fig. 4-10: File properties, changing the password(s)

For the so far unprotected function block - the field for the old password is
marked in gray -, a new password can be entered permitting to edit and/or
view, but not change, the function block. If this password is not confirmed
or a wrong confirmation was entered, this is indicated with a red "!" at the
end of the line.

The red "!" becomes a green "Y" if the input is correct.

Note: Changes have to be saved and become effective only after
reload.

Edit View Possibilities

Fulfilled Not of any
importance

The file can be modified.

Not fulfilled Fulfilled The file can be viewed.

Not fulfilled Not fulfilled The file cannot be viewed;
compilation and download are possible.

Fig. 4-11: Access with entered and fulfilled / not fulfilled password

4-8 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• for allowing to write on inputs (IO simulation) in this file (resources or
programs, or, if VAR EXTERNAL is used, also in programs or function
blocks) (also see Search in Compound, Write on Input Addresses -
Search in Compound).

info03.BMP

Fig. 4-12: Allow to write on absolute input variables in this file

Note: This permission is decisive only for the current file whose
properties are affected.

Example: On resource level, writing on global %I variables has
not been enabled; writing is enabled in the FB xyz => result:
writing on the global %I variable is enabled in the FB using
VAR EXTERNAL.

• for displaying statistical data, such as file name and type, last
modification, modified with version, last user, and information on table
usage,

info04.BMP

Fig. 4-13: File properties, "Statistics"

WinPCL 06VRS WinPCL 4-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Print
The figure below shows all print methods.

Drucken.bmp

Focused file: Program PR_TYPE, declaration editor
Current resource: Resource RE_TYPE

Fig. 4-14: "File / Print" menu item

Print <Ctrl>+<P>

The menu item starts printing of the focused file; the current editor
content is printed out.

In this example: Declaration of the program PR_TYPE

Note: Print <Ctrl+P> prints the currently displayed editor contents
without considering the language set under
Tools\Options\Print.

Print "xx"

The menu item starts printing of the focused file; the components set in
the WinPCL options are printed consecutively.

For example:

Declaration, implementation, cross reference of the program PR_TYPE

Print compound "xx"

The menu item starts printing of the focused file with all its used /
released files; here too the components set in the print options are printed
consecutively.

For example:

Declaration, implementation, cross reference of the program PR_TYPE

Declaration, implementation, cross reference of the FBs FB_TYPE....

4-10 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Print compound of resource "yy"

This menu item starts printing of the loaded resource (to be set under
"Compiler / Selection of resource") and all of the files used / released by
it; the components set in the WinPCL options are printed consecutively.

Note: The focused file is contained only if it is used by the current
resource.

Print Rungs (LD / IL)
The rungs to be printed can be selected in the ladder diagram or in the
instruction list by pressing the right mouse button (Print ’Rungs’).

Print_Network.bmp

Fig. 4-15: Print rungs

Note: The command "Print rungs" initiates the printing of the
currently represented editor content without considering the
options set in menu Tools \ Options \ Print.

The context menu Print \ All corresponds to the printing with <Ctrl>+<P>.

Print Options
The settings in the print options are valid for all PLC projects, they do not
have, however, any influence on the printouts with <Ctrl>+<P> (except for
settings of the footer).

There are two ways to move to the menu item ’Print options’:

• Tools \ Options on the page print

• File \ Print \ Print options.

The standard settings can be restored on all pages by pressing the button
"Standard". In fact, this affects only the current page, the settings of the
other pages are not changed.

WinPCL 06VRS WinPCL 4-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Print Options – Content of the Printout (Contents)
On this page you can select, which parts of the project are to be printed.

Print_Content_1.bmp

Fig. 4-16: Print options, content of the printout (Contents)

Components Meaning

Print empty
elements

Are printed also empty action transitions, steps, SFC’s,
imports, IO reservations

Table of contents * Only print of the complete files and compound print
* Common print for complete documentation

IO assignment Only components of resources

Declaration

SFCs Only if provided, not for functions, ARRAYs and structures

Not used actions Only if provided, not for functions, ARRAYs and structures

Not used
transitions

Only if provided, not for functions, ARRAYs and structures

Not used steps Only if provided, not for functions, ARRAYs and structures

Implementation Only if provided, not for ARRAYs and structures

Cross reference
list

Not for ARRAYs and structures

Import Only if provided

Fig. 4-17: Supplement to the print options, content of the printout (Contents)

The "All" and the "None" buttons accelerate the selection of the content.

4-12 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Print Options – Settings of the footer (Footer)

print_footer.bmp

Fig. 4-18: Print options, settings of the footer (Footer)

On this page you can configure the content for the printout of the footer.
These settings are also valid when printing with <Ctrl>+<P>.

The configuration refers to the left side of the footer where it is possible to
design the logo and additional texts.

print_example_footer.bmp

Fig. 4-19: Supplement to the print options, settings of the footer (Footer)

Logo:

As a logo an arbitrary file can be selected. The logo has to be available as
Enhanced Meta File (EMF).

The logo is searched in the following directories:

..\Projekt_000\CustomData\Bitmap

..\Projekt_000\OemData\Bitmap

..\BasicData\Bitmap

If the same file is in several directories, the first found logo is used.

Note: The preview shows the logo that is, in fact, printed.

It is possible to use an own logo as standard by storing it under the name
Userdoc_Logo.emf for example in the directory CustomData\Bitmap

WinPCL 06VRS WinPCL 4-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Possible settings
Standard

• The standard logo is printed (Userdoc_Logo.emf)

In an user-defined way

• An own logo can be selected

• Only the name of the file is indicated. The corresponding directory is
searched according to the above described rule.

Note: The selection file takes over only the name of the file and not
the selected path.

Without

• No print out of a logo. Instead of the logo two additional texts can be
entered in the footer.

Print Options, View of All Editors (All)

Print_all.bmp

Fig. 4-20: Print options, view of all editors (All)

Print options Comment

Apply declaration comment in
implementation

The declaration comment of variables
is printed in the implementation as a
default-comment.

Language to be used LD
All rungs that can be represented in
the LD are printed in the LD.
IL
All rungs are printed in the IL.
Original
All rungs are printed in the language
set and stored in the editor.

Orientation ’Rung title’ Right- or left-justified orientation of the
rung title in the LD or IL.

Variable display ’Symbolic / Absolute’ Instead of the variable’s name its IO
address can be printed.

4-14 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Print options Comment

Display of absolute variables Representation with the letters I/Q,
E/A or I/O.

Truncating very long texts Selection where to truncate, on the
right or left side, with or without "...".

Truncating very long numbers Selection where to truncate, on the
right or left side, with or without "...".

Fig. 4-21: Complement to printing options, view of all editors (All)

Print Options, Ladder Diagram Editor (LD)

print_kop.bmp

Fig. 4-22: Print options, ladder diagram editor (LD)

Print Options Meaning

Settings for ladder diagrams:

Geometry This option can be used to specify the
number and width the columns.

Additional display:

Comments The comment on the variable is printed
above the ladders.

Direct represented %I..%Q The absolute address of the variable is
printed above the ladder.

Always print ladder diagram rungs
completely

LD rungs are printed on the following
page, if they do not fit anymore on the
current page.
If the rung does not fit on one page, it is
divided up.

Fig. 4-23: Supplement to print options, ladder diagram editor (LD)

WinPCL 06VRS WinPCL 4-15

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Print Options, Instruction List Editor (IL)

print_awl.bmp

Fig. 4-24: Print options, instruction list editor (IL)

On this page you can set the column widths for the printout of the
instruction list editor.

If you enter 0 as column width, the rest of the page is automatically
assigned to this column.

Print Options, Declaration Editor (DECL)

print_decl.bmp

Fig. 4-25: Print options, declaration editor (DECL)

On this page you can set the column widths for the printout of declaration
editor.

If you enter 0 as column width, the rest of the page is automatically
assigned to this column.

4-16 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Print Options, IO Editor (IO)

print_io.bmp

Fig. 4-26: Print options, IO editor (IO)

On this page you can set the column widths for the printout of the IO
editor.

If you enter 0 as column width, the rest of the page is automatically
assigned to this column.

Print Options, SFC List (SFC)

print_sfc.bmp

Fig. 4-27: Print options, SFC list (SFC)

On this page you can set the column widths for the printout of the SFC
list.

WinPCL 06VRS WinPCL 4-17

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Print Options, Action Block Editor (AB)

print_ab.bmp

Fig. 4-28: Print options, action block (AB)

On this page you can set the column widths for the printout of the action
block editor.

If you enter 0 as column width, the rest of the page is automatically
assigned to this column.

Print Options, SFCL List (SFCL)

print_sfcl.bmp

Fig. 4-29: Print options, SFCL list (SFC Lists)

On this page you can set the column widths for the printout of the SFCL
list.

If you enter 0 as column width, the rest of the page is automatically
assigned to this column.

4-18 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Print Options, Cross Reference List (CRL)

print_qvl.bmp

Fig. 4-30: Print options, cross reference list (CRL)

The desired components for the cross-reference list can be selected as
shown in the figure above.

All / Only declared / Not declared / Invalid cross references can be
printed.

They can be sorted in ascending or descending order by identifier /
address or type.

Furthermore, the column width can be preset.

If you enter 0 as column width, the rest of the page is automatically
assigned to this column.

The button "All" and the button "None" accelerate the selection of the
components.

WinPCL 06VRS WinPCL 4-19

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Print Options, ARRAYs

print_array.bmp

Fig. 4-31: Print options, arrays)

On this page you can set the column widths for the printout of the arrays.

If you enter 0 as column width, the rest of the page is automatically
assigned to this column.

Print Options, Structures

print_struct.bmp

Fig. 4-32: Print options, structures)

On this page you can set the column widths for the printout of the
structures.

If you enter 0 as column width, the rest of the page is automatically
assigned to this column.

4-20 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Print Options, Imports

print_import_1.bmp

Fig. 4-33: Print options, imports

On this page you can set the column widths for the printout of the imports.

If you enter 0 as column width, the rest of the page is automatically
assigned to this column.

Printer Selection
The printing process itself is initiated with the usual Windows print
window.

Druckerauswahl.bmp

Fig. 4-34: Printer selection

As the number of pages of the desired files can vary depending on the set
print options, we recommend to create a PDF file before printing is started
to find out the required amount of paper (additional installation - not
included in the Rexroth scope of delivery!)

WinPCL 06VRS WinPCL 4-21

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Page Setup …
As for all Windows programs, the printer-dependent possibilities to set-up
the printed page are shown under this menu item.

Note: Format limitations are specified by the printer or printer driver.

Seite_einrichten.bmp

Fig. 4-35: Set up page for printing

4-22 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Archive
The programming system offers numerous methods for creating file and
project archives.

menue_ablage.bmp

Fig. 4-36: "File / Archive" menu item

The figure of the "File / Archive" menu item shows an overview of all
archive methods:

Archive "xx"
The focused file can be stored with this menu item.

Ablage_datei.bmp

Fig. 4-37: File archive

The currently focused file is displayed. It can be stored together with its
secondary files and, if required, to the destination archive including
comments.

The destination archive and the name of the file to be stored to the
archive can be defined by the user.

WinPCL 06VRS WinPCL 4-23

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Note: If a name is entered with point such as 123.456, the file is
archived under the name 123.apv.

Res.tst is archived as Res.apv.

If the file name is entered completely with Extension.apv that
is added normally automatically, the archive is generated
correctly with Res.tst.apv.

Compound archive of "xx"
This menu item starts archiving the focused file and all of the files used by
it.

Ablage_ab_datei.bmp

Fig. 4-38: Compound archive beginning with the loaded file

The file just being focused and its used files are displayed. They can be
stored to the archive together with their secondary files and, if required, in
the destination archive including comments.

The destination archive and the name of the file to be stored to the
archive can be defined by the user.

Note: If a name is entered with point such as 123.456, the file is
stored to the archive under the name 123.apv.

Res.tst is archived as Res.apv.

If the file name is entered completely with Extension.apv that
is added normally automatically, the archive is generated
correctly with Res.tst.apv.

4-24 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Compound archive starting form current resource
The menu item starts archiving the current resource (settings under
"Compiler / Selection of current resource") and all files used by it.

Ablage_hauptdatei.bmp

Fig. 4-39: Compound archive starting from the current resource

The current resource and its used files are displayed. They can be stored
to the archive together with their secondary files and, if required, in the
destination archive including comments.

The destination archive and the name of the file to be stored to the
archive can be defined by the user.

Note: If a name is entered with point such as 123.456, the file is
stored to the archive under the name 123.apv.

Res.tst is archived as Res.apv.

If the file name is entered completely with Extension.apv that
is added normally automatically, the archive is generated
correctly with Res.tst.apv.

Note: The focused file is contained only if it is used by the current
resource.

WinPCL 06VRS WinPCL 4-25

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Free File Selection
The "Free file selection" allows to archive any file selected by the user.

Ablage_frei.bmp

Fig. 4-40: Free file selection

All PLC files of the variant are displayed. They can be selected
individually.

An options checkbox allows to select whether the connected files and, if
necessary, the secondary files are to be archived as well.

A comment is possible.

The archive destination and the name of the file to be stored can be
defined.

Note: If a name is entered with point such as 123.456, the file is
stored to the archive under the name 123.apv.

Res.tst is archived as Res.apv.

If the file name is entered completely with Extension.apv that
is added normally automatically, the archive is generated
correctly with Res.tst.apv.

4-26 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Load Archive
The menu item serves for loading a stored file.

Ablage_holen.bmp

Fig. 4-41: Load archive

The storage directory, the desired file is to be loaded from, can be set
with this menu item. The names of the different archive files which are
residing in this directory are displayed to the left, if this option is activated.

Files which are residing in the archive file selected, can be selected
separately to the right.

A new variant can be defined as destination archive or the file can be
applied to the current variant.

Note: If the file is applied to the current variant, files with same
names are overwritten.

Archives provided to support the firmware functionality

WinHMI and WinPCL are using the folders

• ...Mtgui\BasicData\TEMPLEATES

• ...WinPCL\BasicData\TEMPLATES

for archiving templates which support the firmware functionality (e.g.
ibs_control.apv for INTERBUS file types, functions and function blocks).

WinPCL 06VRS WinPCL 4-27

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Import

Import of Files and Compound Files
This menu item allows an import of text files and compiles these files into
PLC files.

import.bmp

Fig. 4-42: File import

Import is possible for the following files:

• DOS_ASCII text files from PCL

• WIN_ANSI text files, exported by means of the "File / Export" file menu

• if enabled, Unicode files, exported by means of the "File / Export"
menu item

Comment Import
(Also see Fehler! Verweisquelle konnte nicht gefunden werden.)

• Comment import for file nn

• Compound comment import of file nn

• Compound comment import of the current resource nn

Export
This menu item allows ANSI export.

In addition, it allows export of comments for compilation.

Export of Files and Compound Files
This menu item allows ANSI export

• of the focused file,

• of the focused file and the files used by it,

• of all files, starting with the current resource.

4-28 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

export.bmp

Fig. 4-43: Export

The archive destination (and the file name outside of WinPCL) can be
selected for ANSI export.

Note: The text file itself contains a second name in the file, which is
activated later when it is imported. This is the original name of
the file in WinPCL.

Compounds are saved in a file.

Comment Export
In addition, this menu item allows export of comments for compilation.

(Also see Comment Import)

• Comment export for file nn

• Compound comment export of file nn

Compound comment export of current resource nn

Exit
This menu item closes the program. Open and modified files are stored
after confirmation of a security prompt.

WinPCL 06VRS WinPCL 4-29

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

4.3 Edit

The "Edit" menu item comprises a group of block commands and the
"Find / Replace" group.

menue_bearbeiten.bmp

Fig. 4-44: "Edit" menu item

Block command group

• Cut <Ctrl>+<X>

• Copy <Ctrl>+<C>

• Insert <Ctrl>+<V>

• Delete

"Find / Replace" group

• Find <Ctrl>+<F>

• Find Next <Ctrl>+<R>

• Replace <Ctrl>+<H>.

"Search in compound" group

• Global Cross Reference - Search in Compound

• Write on Input Addresses - Search in Compound

• Diagnosis, Search in Compound

Cut <Ctrl>+<X>
is a standard Windows command. This command is used to remove the
particular text passage / block selected and to file it in the clipboard (also
see Copy <Ctrl>+<C>).

Note: If a block is cut in the declaration editor, the data types are lost
together with the variables. In the implementation, the
applications then change their color to red - error!

4-30 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Copy <Ctrl>+<C>
is a standard Windows command. Using this command, the text passage
/ block selected is filed in the clipboard, being preserved (also see Cut
<Ctrl>+<X>).

Insert <Ctrl>+<V>
is a standard Windows command. This command applies the text which
was filed in the clipboard with the "Copy" command to the current editor.

Note: If a text block is copied into the declaration editor, the added
variables with same name are indicated in red - error!

Delete
is a standard Windows command for deleting the text passage / block
selected.

Note: If a text block is deleted in the declaration editor, the data
types are lost together with the variables. In the
implementation, the applications then change their color to red
- error!

Find <Ctrl>+<F>

suchen.bmp

Fig. 4-45: Finding a character string

The find function is a standard Windows command. Enter the text to be
found in the "Find" field and click on the "Find next" button. The cursor
stops on the search criterion.

The find function can be restricted to

• Find whole word, and

• Match case.

Furthermore the search direction can be defined.

Once started, any search process can be continued by pressing the Find
Next <Ctrl>+<R> button.

WinPCL 06VRS WinPCL 4-31

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Find Next <Ctrl>+<R>
This standard Windows command continues the already started search
for a specified text. The set options are preserved (Find <Ctrl>+<F>).

Replace <Ctrl>+<H>

ersetzen.bmp

Fig. 4-46: Finding and replacing of a character string

The standard Windows command searches for a given term. The cursor
stops on the search criterion. The found term is replaced by pressing the
"Replace" button. Pressing the "Replace all" button replaces the found
term automatically replaced at any point where it occurs.

The find function can be restricted to

• Find whole word, and

• Match case.

The area the be searched through can be defined; either

• search in the complete editor or

• only in the block selected with the "Selection" option.

4-32 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Search in Compound
comprises the present options of searching for variables or instances
(Global Cross Reference - Search in Compound), for input variables %I
(Write on Input Addresses - Search in Compound) or for diagnosis
information (Diagnosis, Search in Compound) within the entire compound.

Global Cross Reference - Search in Compound
This menu item activates the Cross Reference Help, with the user having
to enter the text to be found. The cross-reference help can be used for
the following items:

• File

• File and files used by it

• From the current resource

Note: At present, the selection window displaying the cross
references found can only be used for loading files, but not for
selecting instances of these files. For that reason, a status
display is not possible in the respective editor.

Write on Input Addresses - Search in Compound
This menu item activates the Cross Reference Help for finding all inputs
which are written to. The search can be used for the following items:

• File

• File and files used by it

• From the current resource

(also see Properties, allow to write on inputs, IO simulation).

Diagnosis, Search in Compound
(Menu item not yet released)

This menu item activates the search for the elements of ProVi messages
and SFC diagnoses.

In the appearing selection dialog you can specify which elements of the
diagnosis are to be searched for.

Then, the diagnosis elements "Module number" "Message type" and
"Message number" must be exactly specified in the following input field.
So, you have to specify, for example, for "Message type", if it is to be
searched for "Error", "Status message", "Warning", "Start condition" or
"Startup diagnosis".

During the choice of "Criterion analysis" the input field becomes blind.

As result a window is shown, in which all uses of the "Message type"
"Error" are listed. The diagnosis elements for which are searched can be
found in the first column of the cross reference help.

In this window you find commands already known from the cross
reference help, so for example cursor commands for the navigation and
the branching to the concrete position.

The search can be used for the following items:

• File

• File and files used by it

• From the current resource

WinPCL 06VRS WinPCL 4-33

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

4.4 View

menue_ansicht.bmp

Fig. 4-47: "View" menu item

The "View" menu item combines the main components (editors) of the
programming system. For reasons of a better understandability these
editors are described in separate chapters.

Implementation <Shift>+<F2>, described in chapter >>Instruction List
Editor<< and chapter >>Ladder Diagram Editor<<

Declaration <Alt>+<F2>, described in chapter 3, >>Declaration Editors<<

IO editor, described in chapter >>IO Editor<<

SFCs <Alt>+<F3>, are described in Chapter >>Sequential Function Chart
Editor << and in Chapter >>Action Block Editor<<

The menu items of the next group are described subsequent to this
overview:

• Cross Reference List (and Cross Reference Help)

• Import <Ctrl>+<F2>.

Implementation

Declaration

IO Editor

SFCs

4-34 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Project Navigator
The project navigator appears as a docked window to the left of the
screen. As is known from an explorer, the project navigator also displays
tree structures in the "File", "Import" and "Instance" views of the POUs of
the basic directory or the variant selected.

Import View
The import view shows the files used at least once by the current file.

Pronav_Import_01.bmp

RE Resource (user)
PR Program (user)
FB User function block
fb Firmware/standard function block
FN User function
fn Firmware/standard function
ST User structure
st Firmware/standard structure
AR User array
ar Firmware/standard array

Fig. 4-48: Import view of a variant

(Also see Import <Ctrl>+<F2>.)

Various pop-up functions (<Shift>+<F10>, right mouse button) are
assigned to the various items within the tree.

• "Control" line: refresh; the structure is rescanned

• "PLC Imports" line: Transition to WinPCL Options

• "RE/PR/FB/FN/ST/AR" lines: Open the file (standard, double-click),
further commands in the upper pop-up area, as well as transitions to
possible editors in the lower area

• "fb/fb/st/ar" lines: open the declaration part for display . . .

WinPCL 06VRS WinPCL 4-35

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Instance View
The instance view displays the file instances used by the currently
selected instance. The instance name is always displayed first and then,
in brackets, the type name. If used within one file, several instances of the
same type appear independently of each other.

Pronav_Instance_01.bmp

RE Resource (user)
PR Program (user)
FB User function block
fb Firmware/standard function block
FN User function
fn Firmware/standard function
ST User structure
st Firmware/standard structure
AR User array
ar Firmware/standard array

Fig. 4-49: Instance view of a variant

(Also see Import <Ctrl>+<F2>.)

Various pop-up functions (<Shift>+<F10>, right mouse button) are
assigned to the various items within the tree.

• "Control" line: refresh; the structure is rescanned

• "Instances" line: Transition to WinPCL Options

• "RE/PR/FB/FN/ST/AR" lines: open the file instance, e.g. for displaying
the status with running control (standard, double-click), further
commands in the upper pop-up area, as well as transitions to possible
editors in the lower area.

• "fb/fb/st/ar" lines: open the declaration part for display . . .

4-36 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

File View
The file view displays the files which are included in the basic directory or
in the current variant, independent of the way they are used. The files are
each arranged by RE/PR/FB/FN/AR/ST order. Each file is followed by the
transitions to possible editors.

Pronav_File_01.bmp

RE Resource (user)
PR Program (user)
FB User function block
fb Firmware/standard function block
FN User function
fn Firmware/standard function
ST User structure
st Firmware/standard structure
AR User array
ar Firmware/standard array

Fig. 4-50: File overview of a variant

Various pop-up functions (<Shift>+<F10>, right mouse button) are
assigned to the various items within the tree.

• "Control" line: refresh; the structure is rescanned

• "Program sources" line: permits creation of new RE/PR/FB/FN/AR/ST
using the pop-up menu To make them visible in the project navigator,
the tree must be rescanned in the "Control": refresh line.

• New RE/PR/FB/FN/AR/ST can also be created in the "Resources",
"Programs", "Function blocks", "Functions", etc., using the pop-up
menu.

• "RE/PR/FB/FN/ST/AR" lines: using the pop-up menu: open the file in
the particular editor as well as further currently available commands.

• "fb/fb/st/ar" lines: open the file in the particular editor using the pop-up
menu.

WinPCL 06VRS WinPCL 4-37

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Cross Reference List (and Cross Reference Help)
• In the first version, the cross reference list (CRL) relates to the

focused program organization unit. The CRL shows those elements of
the program organization unit which are preset in the "WinPCL
Options, Cross Reference List (CRL)", their declaration sites and the
locations where they are used (Cross Reference on Resource Level,
Cross Reference on PR / FB FN level). The cross reference list can be
called up using the "View / Cross reference list" menu item.

• The Cross Reference Help relates to the element where the cursor is
currently positioned. Here, the user has the option whether to search
in the file, from the file, or in the complete compound. The cross
reference help can be called up in the pop-up menu of the particular
editor, using the right mouse button or <Shift>+<F10>.

Cross Reference List Pop-up Menu <Shift>+<F10>
This pop-up menu contains the commands which are essential to this
editor. It can be opened by pressing the right mouse button or the
<Shift>+<F10> keys.

Menu items Explanation

Go to place of use Opens the editor required; the cursor is on the desired position.

Declaration help Description of the data type of the current element, where the cursor is
positioned.

Cross reference help List of all places where the current element is used.
The place of use can be reached by double-clicking the mouse or pressing
the <Ctrl>+<Enter> keys.

Force

(PLC in operating mode "STATUS")

Allows the entry of a variable name. The value of the variables is displayed
and can be forced once. The window remains open and the process can
be activated again. Forcing takes place between the update of the input
variables and the start of program code execution.

Status ARRAYs / Structures Display of the status of array and structure elements, forcing by pressing
the <Shift>+<F10> keys or the right mouse button.

Options * Optimization of the column width.
* Expanding; completely opening the tree structure
* Arranging the current column alphabetically, in ascending or descending
order.

Print current window.... <Ctrl>+<P> Print of the editor contents by pressing <Ctrl>+<P>.

Fig. 4-51: Cross reference list pop-up menu

4-38 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Cross Reference on Resource Level

QVL_RES.bmp

Fig. 4-52: Cross reference on resource level

The cross reference list shows the names of the respective elements of
the program organization unit in the "Name" column. The figure above
shows variables (lines 1 to 7) and the instance names of the programs
which run under the task manager (lines 8 to 12).

The triangle next to "Name" indicates, that the elements of this column
have been sorted alphabetically with the buttons 1- A->Z and 2- Z->A in
the bottom line of the active window. A sort by the elements of the
adjacent columns is also possible. To achieve this, the cursor must be put
on the desired column.

The "Type" column shows the data type of the variables (lines 1 to 7)
and, for the names of the programs, the type names of the program
instances (lines 8 to 12).

The "AT" column shows the absolute addresses for the variables, if
provided. The program instances show the name of the task.

Declaration is displayed in the "Area" column.

The "Use" column indicates, that the element is valid.

Note: An information on global release is missing at the moment.

Branching to the respective place of use is possible by pressing the
<ENTER> key or by double-clicking the mouse.

WinPCL 06VRS WinPCL 4-39

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Cross Reference on PR / FB / FN level

QVL_FB.bmp

Fig. 4-53: Cross reference list of a function block with functional sequence

The cross reference list shows the names of the respective elements of
the program organization unit in the "Name" column.

The "Type" column shows the data types of the variables and the type
names of the function block instances.

The "AT" column shows the absolute addresses for the variables, if
provided.

More information can be found in the cross reference list on program
level, function block level and function level:

Area NW Comment Explanation

Declaration Valid Valid variable declaration

Steps Valid Valid entry in the step table

Transitions Valid Valid entry in the transition list

Actions Valid Valid entry in the action list

SFC sfc_name Step The element is a step in the sfc_name sequence

SFC sfc_name Boolean transition /
NAND Boolean transition

The element is a Boolean / NAND Boolean transition
in the sfc_name sequence.

STEP step_name 1 Boolean action /
NAND Boolean action

The element is a Boolean / NAND Boolean action.

TRANSITION trans_name 1 LD, LDN, ST,
-[]-, -[/]-,-[P]-, -[N]-, -()-

The element is a variable, which is used true or not
true in the trans_name transition in network 1 (IL /
LD).

ACTION action_name x LD, LD>, LDN, LDN>, ST,
STN......
-[]-,-[/]-,-[P]-,-[N]-,-()-,-(/)-...

The element is a variable, which is used true or not
true in the action_name action in network x (IL / LD).

Implementation y LD, LDN,ST, STN......
-[]-,-[/]-,-[P]-,-[N]-,-()-,-(/)-...

The element is a variable, which is used true or not
true in the implementation in network y (IL / LD).

Fig. 4-54: Information from the cross reference list

Note: At present, information on external use is not provided.

4-40 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The triangle next to "Name" indicates, that the elements of this column
have been sorted alphabetically with the buttons 1- A->Z and 2- Z->A in
the bottom line of the active window. A sort by the elements of the
adjacent columns is also possible. To achieve this, the cursor must be put
on the desired column.

Branching to the respective place of use is possible by pressing the
<ENTER> key or by double-clicking the mouse.

Cross Reference Help
The cross reference help has the same contents as the cross reference
list but with the limitation that it refers to only one element or to the
element and subelements, which are currently used. The cross reference
help is activated by opening the "Cross reference help" pop-up menu by
pressing the right mouse button or the <Shift>+<F10> keys.

QVH_01.bmp

Fig. 4-55: Search for the variable "I_Start"

It is possible to select one of the following search areas:

• Search in current file

• Search in the current file and the files it is using

• Search starting from the current resource

Note: All variables of the same name are found.

For that reason, the variables may be of a different type in the
various files, having nothing in common but their name!

WinPCL 06VRS WinPCL 4-41

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

QVH_02.bmp

Fig. 4-56: Selection of the file where the variable "I_Start" can be tracked further.

The variable "I_Start" has been found in the following files:

• RE RE_SFC_1 and

• PR PR_SFC_00.

In the example above, the variable is agreed globally and is used in the
program via VAR EXTERNAL.

The program is preselected,

• in the declaration as valid line,

• in the implementation as normally open LD contact in network 1,

• in the "Message" action in connection with an IL-LD command,
network 1 as well.

With the cursor at the desired position, double-clicking or pressing
<Ctrl>+<Enter> opens the desired file at the desired position.

Note: At present, the selection window displaying the cross
references found can only be used for loading files, but not for
selecting instances of these files. For that reason, a status
display is not possible in the respective editor.

The right-hand section of the screen can be activated or deactivated
using "Display / Preview".

4-42 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Cross Reference Help Pop-up Menu <Shift>+<F10>
The pop-up menu contains the commands which are essential to this
editor. It can be opened by pressing the right mouse button or the
<Shift>+<F10> keys.

Menu items Explanation

Go to application Opens the editor required; the cursor is on the desired position.

Declaration help Description of the data type of the current element, where the cursor is
positioned.

Cross reference help List of all places where the current element is used.
The place of use can be reached by double-clicking the mouse or pressing
the <Ctrl>+<Enter> keys.

Force

PLC in operating mode "STATUS"

Allows the entry of a variable name. The value of the variables is indicated
and can be forced once. The window remains open and the process can
be activated again. Forcing takes place between the update of the input
variables and the start of program code execution.

Status ARRAYs / Structures Display of the status of array and structure elements, forcing by pressing
the <Shift>+<F10> keys or the right mouse button.

Options * Optimization of the column width.
* Expanding; completely opening the tree structure
* Arranging the current column alphabetically, ascending or descending

Print current window <Ctrl>+<P> Print of the editor contents by pressing <Ctrl>+<P>.

Fig. 4-57: Cross reference help pop-up menu

WinPCL 06VRS WinPCL 4-43

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Edit Strategy - Variations in Font Color of Cross
References
Analogously to the other editors, the user’s attention is drawn to errors or
invalid lines in the cross reference list of the programming system by
variations in font color.

Correct information is displayed in dark-blue lines with white or gray
background.

Deviations from this color combination signalize errors, either in the
declaration or the place of use of the variable.

QVL Fehler.bmp

Fig. 4-58: Cross references - variations in font color of cross references

Name Area Comment

%MW1.0 Declaration Invalid line, name and absolute address are
displayed separately.

b1 Implementation Variable not declared yet, unknown type.

bool1 Correct

bool2 Implementation Used in spite of error in declaration.

bool2 Declaration Invalid

bool4 Correct

Fig. 4-59: Display of errors in the cross reference list

4-44 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Options - Cross Reference List (and Cross Reference
Help)
Select "CRL" from the menu Tools / Options / View.

optionen_qvl.bmp

Fig. 4-60: Options - cross reference list

The desired components for the cross reference list can be selected as
shown in the figure above.

All / only declared / not declared / invalid preferences can be displayed.

They can be sorted by ascending or descending order, by identifier /
address or type.

The column width can be preset.

Note: The settings also affect the printout of the cross reference list.

WinPCL 06VRS WinPCL 4-45

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Import <Ctrl>+<F2>
The "Import" menu item indicates which program organization units
(programs / function blocks / functions) or data types (structures /
ARRAYs) have been imported by the focused program organization unit
and from where the import was started (current work directory / standard
library).

It is possible to select from different views:

import_tree_instance.bmp

Footer command: 3 - tree representation with preview
7 - Instance view

Fig. 4-61: Import window, tree representation, instance view

import_tree_import.bmp

Footer command: 3 - tree representation with preview,
6 - Import view

Fig. 4-62: Import window, tree representation, import view

4-46 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

In the instance view, all instances of a type are displayed separately, while
in the import view each type is displayed only once. The buttons 6 and 7
in the footer permit toggling the views.

Furthermore a list representation with or without preview can be selected
instead of the tree representation.

import_list_instance2.bmp

Footer command: 1 - List without preview,
7 - Instance view

Fig. 4-63: Import window, list without preview, instance view

or

import_list_instance1.bmp

Footer command: 2 -List with preview,
7 - Instance view

Fig. 4-64: Import window, list with preview, instance view

Both windows are also available as import views.

WinPCL 06VRS WinPCL 4-47

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

4.5 Compiler

menue_compiler.bmp

Fig. 4-65: "Compiler" menu item

The currently possible compilation methods are combined under the
"Compiler" menu item. If files included in the compound of the current
resource are concerned, each of these compilation methods activates the
"Edit" mode. The subsequent download <Ctrl>+<F9> causes the resource
to restart. For further information on online editing, please refer to
>>Online editing in the ladder diagram<< and >>Online editing in the
instruction list<<.

Compilations Based on the Focused File:
Focused file "xx"

File alone, together with earlier compilation products of the files used by
this file.

Necessary files for "focused file xx"

All files, which are necessary for the focused file; only those files are
compiled which have been modified since the last compilation.

Complete compilation starting from "focused file xx"

All files, which are necessary for the focused file.

Note: These files do not have to reside in the control or belong to the
compound of the current resource!

Compilations Based on the current resource:
Necessary files starting from the current resource "xx"

All files, which are necessary for the current resource; only those files are
compiled which have been modified since the last compilation.

Complete compilation starting from current resource "xx"

All files, which are required for the current resource.

4-48 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection of the Current Resource

hauptdatei.bmp

Fig. 4-66: Dialog window for selecting the current resource

One of the PLC resources of the current variant in the current control can
be selected as current resource.

Note: The current resource is automatically deleted, if you change
the variant and/or the control. It has to be entered again for the
new environment.

WinPCL 06VRS WinPCL 4-49

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

4.6 Start

menue_start.bmp

Fig. 4-67: "Start" menu item

The "Start" menu item allows to

• load the programs of a resource into the control,

• copy program data from the (volatile) PLC storage to a non volatile
storage of the control (only for PPC and Soft Controls)

• activate and deactivate the variable values and display the active
elements in the sequential function chart. The "Display of variable

values" button is in effect during " " and " ". This button

is without any effect in the " " state.

• reset the control under certain circumstances (soft reset),

• access variable values (assignment of the values to the complete
variable name), i.e.

• download retain data from the control and save them as file,

• upload the retain data from this file to the control again

• download retain data or all data from the control, export them as
text files, alter variables and/or values and upload the altered
values to the control again.

• view and affect single-element variables on the control and

• view and affect multi-element variables.

4-50 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Download "xx" in Control "yy" <Ctrl>+<F9>
The "Download "xx" in control "yy" <Ctrl>+<F9>" command is of a highly
complex nature.

On the basis of the set current resource "xx", this command saves all files
which are used by the current resource and then compiles all necessary
files (also see "Compiler / Necessary files starting from the current
resource").

This compilation is followed by a load procedure into the control "yy".

download.bmp

Fig. 4-68: Download of a resource

After completion of the download procedure, first the control is initialized
and the multi-task system is activated, that means the resource is
executed. The complete PLC program is executed subsequently,
according to the priorities of the individual tasks and the order of the
entries of the programs, the execution of which is controlled by a task .

Note: After completion of the download procedure, the control and,
thus, the RETAIN data of the resource, the programs and the
function blocks are initialized.

After completion of the download procedure, it is ensured that all source
files pertaining to the PLC program running in the control, including their
secondary files, are stored in the directory...
\MTGUI\project_xxx\ProgramData\device_yyy\PLC\Downloaded Files.

WinPCL 06VRS WinPCL 4-51

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Save PLC Memory
PPC and soft controls only have volatile memories for the PLC programs.
Therefore, it is necessary to copy the corresponding data from the volatile
to a non-volatile memory before switching off the control. The user
decides when this "saving" takes place (see section "Options,
Download").

• Save PLC memory after download

• Save PLC memory after every online changing

When switching on the control the data are loaded back into the volatile
memory.

Note: The last saved status is loaded back into the volatile memory!

Note: This menu item is indicated in gray for controls, that do not
require this function.

Display of Variable Values
This menu item permits activation and deactivation of the variable status

display in the " " and " " states. This button is without any

effect in the " " state.

The status display of a running PLC program, i.e. of the complete
resource, allows viewing of the variable values (ANY_ELEMENTARY) at
the end of the cycle of the resource. Each cycle was executed at least
once.

Note: The current status display is not yet able to differentiate
between edited and skipped sections in LD / IL!

4-52 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

status.bmp

Fig. 4-69: Status displays in different editors

The figure above shows an overview of the status displays in different
editors:

• Declaration editor

• Value of single-element variables, "=" column, white on blue

• Value of ARRAYs and structures, see status ARRAYs / Structures

• Ladder diagram editor

• Value of non-Boolean single-element variables, white on blue

• Value of ARRAYs and structures, see status ARRAYs / Structures

• Reproduced signal flow according to the variable values, blue

• Blue left margin in front of bus-bar

• Instruction list editor

• Value of single-element variables in the column next to the
operands, white and blue

• Value of ARRAYs and structures, see status ARRAYs / Structures

• Blue line to the left

• Sequential function chart (SFC) editor

• Active steps and executed transitions, white on blue

• Non-executed sequences in their initial condition, only the initial
step is white on blue

WinPCL 06VRS WinPCL 4-53

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• Action block editor

• Boolean action: white on blue, variable is TRUE, otherwise blue on
white, variable is FALSE

• Other actions: white on blue, action is in process

• Action time follows according to the definition of the action qualifier.

Note: With activated status display, executed actions show the value
T#0s, not the value of the action time.

• Blue line to the left: the step, the action blocks belong to, is
executed; no blue line: action blocks are edited somewhere else,
here only their status is displayed.

Reset PLC
A software reset of the control is possible with this menu item. Reset,
however, depends on the adjacent control components, e.g. MTC or the
like.

For that reason, it is necessary that the user informs himself on the
effects and options of the hardware used.

Variable Values
This menu item permits

• to upload RETAIN data from the control (Upload ‘Variable values’),

• to edit the variable values, to save them in a file and to reload them,

• to download the values edited to the control again (Download ‘Variable
values’).

In addition, the values are assigned to the complete variable name.

Upload Variable Values (Compound)
All RETAIN data of the compound, i.e. retain variables and data of
function blocks, that have been declared under VAR_RETAIN, currently
running on the control is removed from the control.

The data is automatically stored in file
"ressource_name@DEF@RES.RVD". Then, the data are displayed.

Edit_Var_mit_laden_speichern.bmp

Fig. 4-70: Edit window after "Upload Retain Data (Compound)"

4-54 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The buttons "Save" and "Load" in the above window allow to archive and
re-call the RVD file into the window.

The buttons "Export" and "Import" enable to archive or load the file as
text file under an arbitrary name.

The button "Download" activates the transfer of the displayed variables to
the control. Variables of the same name are overwritten with the values
(Also compare with "Edit Variable Values").

A download of single variables or instances can be prevented, if the
’check mark’ before the respective element is removed. This property is
not saved. The buttons "Select all" or "Select none" refer to the elements
displayed in the right window.

The buttons "Upload Retain" (upload the retain variable values from the
control) and "Upload all" (upload all variable values from the control)
overwrite the window contents.

Download Variable Values (Compound)
This menu item allows to reload file "ressource_name@DEF@RES.RVD"
in the control.

It is not relevant, if, at this time, the variable (instance) is still in the VAR
RETAIN or already in the VAR area.

Thereby, the variable name and the corresponding instance way are
taken into account.

A download of single variables or instances can be prevented, if the
’check mark’ before the respective element is removed. This property is
not saved. The buttons "Select all" or "Select none" refer to the elements
displayed in the right window.

Note: Variable values, that exceed the size predefined by the type,
are not archived.

Variable values, that have no equivalent in the control,
generate an error message and are listed there.

Data consistency during the transfer is not guaranteed!

Additionally, the following restrictions have to be considered:

• Variables assigned to SFC elements can not be modified (the values
loaded in the control are overwritten again).

• Instances of the function blocks (selection) mentioned below are not
up-dated correctly (see also section ’Limitation of the Declaration of
Function Blocks in the Retain Area’ in chapter ’Declaration Editors’):

• Time stages (TON, TOFF, TP)

• Blocks to combine PLC / CNC and PLC / SYNAX.

• Blocks for serial communication.

• Blocks for bus communication.

WinPCL 06VRS WinPCL 4-55

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Edit Variable Values
If the menu item "Edit variable values" is opened, the edit window appears
without button "Load" and "Save". All operations allowed now refer to the
text files designated by the user with own names.

Edit_Var_ohne_laden_speichern.bmp

Fig. 4-71: Edit window in menu item "Edit variable values"

The button "Upload Retain" (upload the retain variable values from the
control) and "Upload all" (upload all variable values from the control)
serve to fill up the, at that time, empty edit window.

The buttons "Export" and "Import" allow to archive or load the file as text
file under an arbitrary name. The name of this text file and its archive
location can be freely selected. The file can be edited with the notepad or
a comparable text editor.

The button "Download" activates the transfer of the displayed variables to
the control. Variables of the same name are overwritten with this values
(compare also with section "Edit Variable Values")

The download of single variables or instances can be prevented, if the
’check mark’ before the respective element is removed. This property is
not saved. The buttons "Select all" or "Select none" refer to the elements
displayed in the right window.

Note: Paths and variable names have to be correctly archived.
Faulty (not found) variables are displayed in gray.

While modifying variable values, please consider the
limitations predefined by the variable type!

Additionally, the following restrictions have to be considered:

• Variables assigned to SFC elements can not be modified (the values
loaded in the control can be overwritten again).

• Instances of functions blocks mentioned below (selection) are not
correctly up-dated (see also section ’Limitation of the Declaration of
Functions Blocks in the Retain Area’ in chapter ’Declaration Editors’):

• Time stages (TON, TOFF, TP)

• Blocks to combine PLC / CNC and PLC / SYNAX.

• Blocks for serial communication.

• Blocks for bus communication.

4-56 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Force <Shift>+<F8>

beeinflussen.bmp

Fig. 4-72: Forcing variables, here in the ladder diagram

Using

• the menu item "Start / Force" menu item,

• the <Shift>+<F8> keys,

• the right mouse button or

• the key combination <Shift>+<F10> in the opened pop-up menu,

it is possible to display or change the value of elementary variables
(ANYELEMENTARY).

If the cursor is positioned on a useful variable in the focused editor (see
above), the name of this variable is applied and the value of the variable
is displayed.

It is possible to define several windows for different variables.

Note: The desired variable has to be valid - here declared or agreed
as external variable - in the focused program organization unit.

To ensure that input variables (%I...) can also be forced, a value change
is inserted once after update of the image memory (inputs area).

After having been forced once, the variable itself is subject to the
generally applicable processing guidelines.

ARRAYs and structures can be viewed and changed using "Status
ARRAYs / Structures<Shift>+<F3>".

A deactivation of the status closes all view windows.

WinPCL 06VRS WinPCL 4-57

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Status ARRAYs / Structures<Shift>+<F3>

status_arr_01.bmp

Fig. 4-73: Status of ARRAYs / structures, here system variables of a step

The values of structures and ARRAYs can be displayed and changed by
means of the tool "Status ARRAYs / Structures <Shift>+<F3>".

This tool is loaded via

• the "Start / Status ARRAYs / Structures" menu item,

• the <Shift>+<F3> keys,

• the right mouse button, or

• the <Shift>+<F10> keys in the opened pop-up menu.

If the cursor is positioned on a useful variable ("step light" in the example
above), the name is applied to the selection window and the respective
structure is displayed. Otherwise the name can be entered manually.

The elements are shown in a tree structure, so that each element is
accessible, even for nested structures or ARRAYs.

The value of the elements can be changed. To achieve this, the cursor
must be positioned on the name of the element to be changed, the pop-
up menu opened by pressing the right mouse button or the
<Shift>+<F10> keys and the value changed in the "Force" window.

4-58 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

status_arr_02.bmp

Fig. 4-74: Forcing structured data type elements

WinPCL 06VRS WinPCL 4-59

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

4.7 Tools

menue_Tools.bmp

Fig. 4-75: "Tools" menu item

The "Tools" menu item opens the following subitems:

• Options: settings for editors, print, cross reference list, etc.

• PLC Information: data for the resource which is running in the control,
display of the PLC firmware version, the components which are
available in the current control, etc.

• Memory Requirements for Compound: display of the memory
requirements before downloading

• Event Display: protocol of the data exchange between interface and
control

• Display of System Errors: display of control states in the configuration

• Miniature Control Panels: preparation of miniature control panels for
use

• Diagnosis, Module Assignment: ProVi, diagnosis in SFCs, module
assignment in case of multiple instancing

• Password: login, logout of "current user", changing the password of
the "current user"

• Fieldbus Configuration: preparation and start of the configurators for
the respective bus system

• Logic Analysis: start of the general tool "logic analysis"

• File-File Comparison: comparison of any WinPCL files

4-60 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Options
This menu item allows access to the desktop presettings, the view of all
editors, the setting of the editors, the presetting for cross references,
print, and the like.

WinPCL Options, Desktop

optionen_desktop.bmp

Fig. 4-76: WinPCL options, desktop

WinPCL options Meaning

Restore size and position during
startup

This setting refers to the size and position
of the desktop on the screen.

Restore MDI window during startup Windows of the last session are opened
at the previous position with same size.

Other options not enabled yet

Fig. 4-77: Explanations on WinPCL options, desktop

WinPCL 06VRS WinPCL 4-61

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL Options, View of All Editors

optionen_ansicht_alle.bmp

Fig. 4-78: WinPCL options, all editors

WinPCL options Meaning

Apply column width modifications
automatically

Changed column widths become
automatically effective for the next window
of the same editor.

Apply declaration comment in
implementation

The declaration comment of variables is
displayed as default comment in the
implementation; it can be edited and then
becomes an implementation comment. If
this implementation comment is deleted,
the declaration comment is restored.

Variable display symbolic /
absolute

The IO address of the variable can be
displayed in the stead of its name.

Indicate comments in input
language

Comments are displayed in the original
language. Alternatively, imported comments
can be displayed.

Display of absolute variables I/Q is released.

Truncating very long texts Selection where to truncate, to the right or
left, with or without "...".

Truncating very long numbers Selection where to truncate, to the right or
left, with or without "...".

Fig. 4-79: Explanations on WinPCL options, all editors

4-62 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL Options, Ladder Diagram (LD)

Optionen_ansicht_kop.bmp

Fig. 4-80: WinPCL options, ladder diagram

WinPCL options Meaning

Settings for ladder diagrams:

Geometry This option can be used to specify the
number and width of the columns.

Additional display:

Comments The comment on the variables is
displayed above the ladder.

Absolute represented The absolute address of the variable is
displayed above the ladder.

Fig. 4-81: Explanations on WinPCL options, ladder diagram, tools

WinPCL 06VRS WinPCL 4-63

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL Options, Instruction List (IL)

optionen_ansicht_awl.bmp

Fig. 4-82: WinPCL options, instruction list

WinPCL Options, Declaration Editor (DECL)

optionen_ansicht_dekl.bmp

Fig. 4-83: WinPCL options, declaration editor

4-64 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL Options, IO Editor (IO)

optionen_ansicht_io.bmp

Fig. 4-84: WinPCL options, IO editor

WinPCL Options, Sequential Function Chart (SFC)

optionen_ansicht_sfc.bmp

Fig. 4-85: WinPCL options, sequential function chart

WinPCL 06VRS WinPCL 4-65

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL Options, Action Block Editor (AB)

optionen_ansicht_ab.bmp

Fig. 4-86: WinPCL options, action block editor

WinPCL Options, SFC List (SFCL)

optionen_ansicht_sfcl.bmp

Fig. 4-87: WinPCL options, SFC list

4-66 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL Options, Cross Reference List (CRL)

optionen_qvl.bmp

Fig. 4-88: WinPCL options, Cross reference list

The desired components for the cross reference list can be selected as
shown in the figure above.

All / only declared / not declared / invalid cross references can be
displayed.

They can be sorted by ascending or descending order, by identifier /
address or type.

Further the column width can be preset.

Note: The settings also affect the printout of the cross reference list.

WinPCL 06VRS WinPCL 4-67

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL Options, Compile

optionen_compile.bmp

Fig. 4-89: WinPCL options, Compile

WinPCL options Meaning

Code:

Segment management

%M Segment * auto: Size of %M memory in the control as required
* otherwise fixed setting of the reserved memory

%R Segment * auto: Size of %R memory in the control as required
* otherwise fixed setting of the reserved memory

Diagnose Segment: The reserved memory in the control for diagnosis
purposes is set here.

Fig. 4-90: WinPCL options, compile

4-68 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL Options, Download

optionen_download.bmp

Fig. 4-91: WinPCL options, download

WinPCL options Meaning

Options

Buffered download The download process is accelerated if this
checkbox is activated. Deactivate this function
only if you are instructed to do so!

Status display after download The status display is activated immediately
after download if this setting is active.

Permit online modification Permits that, in some of the modifications, the
control still executes the program with
preservation of the variable values, although
the code has been changed.

Issue PLC stop warning Major modifications may require the Edit
mode. If such modifications are activated by
being downloaded, variables and SFCs are re-
initialized. The warning reminds the user that
the system must be moved to a reasonable
operating state.

Save PLC Storage after
Download

Automatic backup function for controls with
non volatile storage (PPC or Soft Control only)

Save PLC Storage after
Online-Edit

Automatic backup function for controls with
non volatile storage
(PPC or Soft Control only)

Control: Window to select the control the set current
resource is to be displayed for.

Current resource: This field displays the current resource.

Fig. 4-92: WinPCL options, download

WinPCL Options, Print
The options to change the print settings are described in section "Print
Options".

WinPCL Options, Debug
The options settable under Debug may only be used according to the
Rexroth service personnel’s instructions.

WinPCL 06VRS WinPCL 4-69

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

PLC Information

spsinfo.bmp

Fig. 4-93: "Tools / PLC information" menu item

This menu item can be used to fetch information on the controls
pertaining to the control compound and to inquire the current data of the
resource that runs on the control and its programs.

Upper part of the PLC information window
One of the controls, which was entered in the control compound by
means of the system configurator, can be selected in the first line.

The following is indicated for this control:

• its current state

• information on the transmission path between the programming
interface and the control

• cycle time of the resource

• minimum cycle time: minimum occurred cycle time of the resource
since program start

• current cycle time

• maximum cycle time: maximum time consumed by the resource;
usually occurring once during the first run due to initialization
processes.

• memory: available memory and unassigned (blank) memory

4-70 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• hardware

• device type

• PLC component

• other components e.g. CNC

• firmware version: Display of the PLC running on the firmware

Lower part of the PLC information window
The line in the middle of the window can be used to select and display the
resource for the current control or one of its programs.

The following information can be loaded for the selected program /
resource:

• identification in control

• name of program / resource

• length in bytes

• creation date and creation time

• transferred by: name of login

• transfer date and creation time (to control)

• archive in the control (inactive for the moment)

• name of archive

• length in bytes

• creation date and creation time

• transferred by: name of login

• transfer date and creation time (to control)

WinPCL 06VRS WinPCL 4-71

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Memory Requirements for Compound
This window shows the memory requirements of the resource and the
files it controls.

Speicherbedarf.bmp

Fig. 4-94: Compound memory requirements

The upper section shows the relation of the data of the compound to the
data in the PLC.

This is follows by data of the total compound, separately for data and
program code memory requirements.

The lower section permits selection of the individual POUs. The code and
data memory requirements are shown for individual instances.

4-72 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Event Display

ereignisanzeige.bmp

Fig. 4-95: Menu item "Tools / Event display" with pop-up menu

The event display is a protocol of the message exchange between control
and operating interface.

Date and time and the event are entered into a list.

A maximum of 1024 entries is allowed, the figure shows 8 of 1024 entries.
If the maximum number is exceeded, the oldest entries are deleted
automatically. The list can be cleared by pressing the "Empty list" button.

The content of the entries can be restricted to the items listed to the left
on the screen (see figure above).

• System faults (background: light-orange)

• Function interface messages (background: gray)

• Communication error (background: yellow)

• WinPCL messages (background: white)

• General messages (background: green)

We recommend to set system faults always to active.

The dialog can be shown and hidden using the "<" /">" keys. It can also
be activated via the pop-up menu by pressing the right mouse button or
the <Shift>+<F10> keys.

In addition to the function of activating and deactivating the dialog, the
pop-up menu also provides the known specification functions.

WinPCL 06VRS WinPCL 4-73

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Display of System Errors
In case of a (system) error the display indicates additional information that
you can’t find in the Event Display.

Thereby, the errors can concern the proper control or any other control of
the respective configuration.

Systemfehleranzeige.bmp

C0: Address of the control in the configuration
Isp200_00_R: Name of the control (system configurator)

Fig. 4-96: System error display

Note: The reset key in the figure above as well as the menu item
"Reset PLC" is only active during online operation.

4-74 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Miniature Control Panels
If a miniature control panel displays the values of PLC variables, these
variables must be downloaded to the control separately .

To achieve this, the screen manager /8/, /9/ generates a file (BTV file) for
each application containing PLC variables, with this file providing the
appropriate information.

The files whose data is to be downloaded to the control must be selected
for each resource downloaded to the control. The appropriate file must be
selected for each screen manager application intended to communicate
with this control.

kleinbedienfeld.bmp

Fig. 4-97: Miniature control panel selection window

The BTV files which can be selected are shown in the left-hand window.

The right-hand window shows the files downloaded to the control.

If an application only contains the PLC diagnosis function, but not its own
variables, it is not necessary to select a BTV file.

Note: This menu item is activated only if a resource file is opened in
the focused editor.

WinPCL 06VRS WinPCL 4-75

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Diagnosis, Module Assignment
This section provides information required for working with the diagnosis
function in WinPCL:

• ProVi Messages (Diagnosis in LD / IL Networks)

• SFC diagnosis

• Module Assignment (Multiple Use of POUs)

• Diagnosis Display of I/O Addresses in and FBs

Diagnoses are subdivided in diagnoses associated with instruction list or
ladder diagram networks and diagnoses tied to sequential function charts.
Since a diagnosis is always filed in the program code, modules must be
assigned if a function block with diagnosis generation comprises several
instances.

ProVi Messages (Diagnosis in LD / IL Networks)
General

ProVi messages are messages emitted by the PLC, which can be
displayed on the WinHMI GUI or on the miniature control panels by
means of the screen manager.

ProVi messages are subdivided in five message types:

• Errors

• Messages

• Warnings

• Starting conditions

• Setup diagnosis functions

The message type defines the type of display on the WinHMI GUI (see /7/
WinHMI documentation).

The warning, starting condition and setup diagnosis message types are
contained only once in each control.

The error and message message types are contained once in each
module, but can be contained several times if there are several modules
in a control (for modules see /7/ WinHMI documentation).

The text to be displayed for a ProVi message must be entered in the
Message Integrator. There, the message can also be translated for
multilingual diagnosis (see /7/ WinHMI documentation).

4-76 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Programming a ProVi message

ProVi messages can be emitted in each program and each FB.

In these POUs, a ProVi message can be assigned to each network with
Boolean result.

Proceed as follows:

• Program the network intended to trigger the ProVi message.

• Press the right mouse button (or the <Shift>+<F10> keys) to select the
ProVi messages item.

NW_Eigenschaften_00.bmp

Fig. 4-98: Assignment of ProVi messages

WinPCL 06VRS WinPCL 4-77

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• A dialog opens where the message type (error, message, warning,
etc.), the message number and the module number can be entered.

NW_Eigenschaften_01.bmp

Fig. 4-99: Dialog for selecting the message type

Entry ProVi message dialog

This dialog can be used for multilingual entry of the text to be displayed
for a ProVi message. The data entered here will be displayed in the
Message Integrator and in WinHMI during diagnosis.

Texts already included in the Message Integrator can also be selected
and assigned to a message in the PLC program.

Automatic selection of an unassigned message number

If the dialog opens for a network which does not contain any ProVi
message, an unassigned message number is automatically suggested
after the message type and module numbers have been selected (this
number corresponds to the highest existing message number + 1).

This dialog can then be used to enter the message text, the continuing
text and the continuing text file for this message number.

Manual selection of a message number

If the automatically selected message number fails to be the one desired,
the message number can also be entered manually. If the Message
Integrator already contains data for this message number, this data is
displayed in the dialog where it can also be edited.

Finding a message number

It is also possible to find an already existing message text and to accept
its message number.

The Find dialog can be called up using the Find button.

4-78 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

NW_Eigenschaften_03.bmp

Fig. 4-100: Find dialog of the Entry ProVi message window

It is possible to search in the message texts or in the continuing texts,
always in all existing languages.

Exiting the dialog by clicking on OK applies the selected message number
in the Entry ProVi message window.

• Any ProVi message assigned to the network is indicated by the "blue i"
to the left on the status bar of the network. The orange color of the
characters characterizes the message.

• Use "Edit\Find <Strg F>" to search for parts of the orange writing.

NW_Eigenschaften_02.bmp

Fig. 4-101: The "blue i" indicating a ProVi message

WinPCL 06VRS WinPCL 4-79

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Note: The maximum length of the message texts must not exceed
80 characters.

If the ProVi message texts for operator terminals are to be
transferred to the control, the following restrictions for ProVi
messages have to be considered:

• Maximum 999 messages can be transferred to the control.

• The number of ProVi messages is limited to the range of 1
to 65535.

• Message number 0 has a special status. It is used to
generate a default text in the operator terminal, if no
message text is defined for a requested message number
(e.g. no message text defined for ProVi message 123). For
this reason, message number 0 must not be used in this
case.

Output of ProVi messages

If the result of a ProVi network is TRUE, the message is emitted; the
message is applied until the result of this network is FALSE again.

Here, the status of the result of the network is decisive, not the status of
the variable at the end of the cycle. This permits to make use of the same
variable in different ProVi networks.

Note: If a network is not edited any longer (e.g. it is skipped, or the
action is not active any longer), the ProVi message cannot
change. In other words, if the requirement for output of a
message is not met any longer and the network of this
message is not executed any longer, this message is
nevertheless applied.

4-80 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Analysis of ProVi criteria

The default setting of a ProVi message is without criteria analysis.
However, the criteria analysis can be activated separately for each
message.

To save the error status, a latch can be programmed. If a latch is in the
network, the whole latch branch (even if it still contains other contacts) is
not calculated in the criteria analysis and does not appear on the display.

To achieve a reasonable diagnosis, specific programming guidelines
must be observed, as otherwise the criteria analysis indicates all
elements of the network as faulty:

• Principally, only operations of Boolean variables can be analyzed.
These can be globally and locally declared. They can be part of a
multi-element variable (ARRAYs and structures as well as their hybrid
form).

• It is not allowed to create an intermediate result.

• Inclusive-XOR operations are not permitted.

• There’s no tracking of the error cause via several networks (dummy
flag calculation).

• Operations, functions and function blocks can not be analyzed.

Exceptions:

It is possible to use function blocks with a Boolean input as upper input
and at least one Boolean output as only output that is wired.

Such a FB is not calculated in the criteria analysis, i.e. the criteria analysis
recognizes the upper input and the output as connected. Therefore, e.g.
timers can be used for a time delay of the message during limit switch
monitoring. To generate a useful error indication in case of an error the
used function block must switch a positive network result (VKE=TRUE)
from its upper input to its upper output.

If the ProVi criteria analysis is carried out, the I/O addresses of the
variables are displayed (see Diagnosis Display of I/O Addresses in PRs
and FBs).

WinPCL 06VRS WinPCL 4-81

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

SFC diagnosis
General information

Each sequential function chart with operating modes (see IndraStep
documentation /2/) can generate a diagnosis on the WinHMI GUI.

The criteria analysis can be called up for this sequential function chart
(see WinHMI documentation /7/). The criteria analysis then displays one
or more ladders which have caused the error in the sequential function
chart.

The criteria analysis is carried out automatically for each disturbed
sequential function chart with diagnosis function, so that it is not
necessary to program an additional code. It is, however, necessary to
observe some programming guidelines so as to obtain a reasonable
criteria analysis.

A sequential function chart must be assigned to a module. This defines
the position of indication on the WinHMI GUI.

The comments of the sequential function chart (sequence, action,
transition, step, variable, IL / LD) can be translated in the Message
Integrator for a multilingual display of the diagnosis.

Programming a SFC diagnosis

By assigning a module to the sequential function chart, the diagnosis for
this sequential function chart is achieved automatically.

Proceed as follows:

• Program the SFC intended to trigger the diagnosis message.

• Press the right mouse button (or the <Shift>+<F10> keys) to select the
Diagnosis properties item.

SfcDiag_00.bmp

Fig. 4-102: Assigning the SFC properties

4-82 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• A dialog opens where the module number can be entered.

SfcDiag_01.bmp

Fig. 4-103: Dialog for entering the module number

• The to the left on the SFC status bar indicates that the diagnosis
function is assigned to this sequential function chart. The orange color
of the characters characterizes the message.

• Use "Edit\Find <Strg F>" to search for parts of the orange writing.

SfcDiag_02.bmp

Fig. 4-104: The "blue i" indicates a sequential function chart with diagnosis

Output of SFC diagnosis messages

In case of a failure in the sequential function chart (see "Programming
with IndraStep - SFCs with Mode Control and Diagnosis" /2/), a
corresponding message is emitted.

This message specifies the SFC name, the failed step and the SFC error
type. This message is applied until the error in the sequential function
chart is cleared.

It is also possible to call up the criteria analysis for this failed sequential
function chart on the WinHMI GUI (see WinHMI documentation /7/).

WinPCL 06VRS WinPCL 4-83

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Programming guidelines

In order to achieve a reasonable diagnosis on the basis of the criteria
analysis, the following programming guidelines for the actions and
transitions of the SFC must be observed.

These guidelines are applicable to programming of the sequential function
chart. In other words, only those actions and transitions are affected
which are contained in a sequential function chart with diagnosis.

The implementations, actions and transitions, which are not used in the
SFC diagnosis, will not be displayed in the criteria analysis. This means
that these guidelines do not apply to the code contained therein.

• It is not permitted to use a Boolean transition or a Boolean action.

• The code in the sequential function chart may contain Boolean
variables only.

• Inclusive-XOR operations are not permitted.

• It is not permitted to call up functions or function blocks.

• Temporary results, i.e. assignments within one network, are not
permitted (see example below).

SfcDiag_03.bmp

Fig. 4-105: Impermissible use of the temporary flag "Output_01" (yellow).

Exception:

• There are variables which, when used, cause the network to be
removed from the diagnosis.
These variables must be defined as described in "Programming with
IndraStep - SFCs with Mode Control and Diagnosis" /2/.
Networks in which these variables are assigned are not displayed in
the diagnosis.

• There are variables which, when used, cause a function block to be
removed from the diagnosis.
These variables must be defined as described in " Programming with
IndraStep - SFCs with Mode Control and Diagnosis" /2/. If a function
block is used in networks in which one of these variables is assigned,
then this function block is not displayed in the diagnosis.
This exception is valid for function blocks containing a Boolean input
as upper input and a Boolean output as only output that is wired. The
network may only contain one FB, otherwise the FB’s are still
displayed in the criteria analysis.

Such a FB is not calculated in the criteria analysis, i.e. the criteria
analysis recognizes the upper input and the wired Boolean output as
connected. Therefore, e.g. timers can be used for the time delay of the
message during limit switch monitoring. To generate a useful error
indication in case of an error the used function block must switch a
positive network result (VKE=TRUE) from its upper input to its upper
output (see also Variable "Output_03" in the following example).

4-84 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

SfcDiag_04.bmp

Fig. 4-106: Hiding FBs from the diagnosis by defined variables (yellow)

Diagnosis display:

SfcDiag_05.bmp

Fig. 4-107: Hidden function block

Note: There’s a tracking of the error cause via several networks
within an action (dummy flag calculation).

Diagnosis Display of I/O Addresses in PRs and FBs
In the criteria analysis, the I/O address is displayed for variables
corresponding to absolutely addressed inputs and outputs.

Under the following conditions, this is applicable even if the real I/O
variable is not defined in the POU of the sequential function chart:

1. The I/O variable is defined globally and is used as VAR_EXTERNAL
variable in the POU.

2. The variable displayed is an input or output of the POU, and an I/O
variable is directly programmed at this input or output. The variable
may neither be negated nor linked to other variables.

Note: The POU must always be invoked because, otherwise, the
status of the internal variable does not correspond to the
status of the input or output.

WinPCL 06VRS WinPCL 4-85

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Example:

The variable Input_01 is used in the sequential function chart of the SfcFB
POU. In the criteria analysis, the address %I1.4.6 is displayed for this
variable.

SfcDiag_06.bmp

Fig. 4-108: Diagnosis display of absolute addresses in FBs

Module Assignment (Multiple Use of POUs)
If an FB (or a program) with diagnosis is declared several times, the
instance in which the diagnosis is to be displayed must be defined.

Example:
One of the function blocks (DRILL_FB) completely controls a drill and also
contains the diagnosis messages of the drill. A control should control two
modules each of which contains one drill. Instances of the same function
block are used for either drill.

Diagnose_Bohrwerk_00.bmp

Fig. 4-109: Declaration of two instances of DRILL_FB

ProVi messages (errors and messages) and a sequential function chart
(drill) are programmed in the FB.

During programming, module numbers had to be specified for these
diagnoses (SFC diagnosis). In the example, module number 1 has been
programmed. However, the diagnosis for one of the drills should be
displayed in module 1 and that of the other drill in module 2.

In the resource, a separate module number can be assigned to each use
of a diagnosis.

The dialog for the module assignment can only be called up for the
resource of the PLC program. This can be achieved using the "Tools \
Diagnosis module assignment" menu item.

This dialog contains an ASCII editor where the module assignments can
be entered with the appropriate syntax:

4-86 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Example:
The program where the two drills (see above) are declared is declared as
Device_01 in the resource.

In this dialog, module number 1 is assigned to all diagnoses of
Drill_Modul1 and module number 2 to all diagnoses of Drill_Modul2.

Diagnose_Bohrwerk_01.bmp

Fig. 4-110: Diagnosis module assignment

If no entry is made in this dialog, the original module number is assigned,
i.e. the entry for Drill_Modul1 in the above figure is not necessary
because the original module number is 1.

Syntax:

• The various specifications are always separated by a dot.

• The following are defined keywords: SFC, PROVI, ERROR,
MESSAGE.

• The complete instance name must be entered for the POU. The
individual instances of the POUs must be separated from each other
by a dot. Example: Device_01.Drill_Modul1

• Sequential function charts are specified by means of
SFC.SfcName.ModulNo.

• SfcName = name of the sequential function chart in the POU

• ModulNo = module number programmed in the original (SFC
diagnosis)

• ProVi messages are specified by PROVI.MessageType.ModulNo.

• MessageType = ERROR or MESSAGE

• ModulNo = module number programmed in the original (ProVi
Messages (Diagnosis in LD / IL Networks))

There is no module number for the other ProVi message types. For
that reason, they cannot be assigned here.

• New module numbers are specified by =X:

• X is the new module number.

WinPCL 06VRS WinPCL 4-87

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The syntax of a line is as follows:

• For sequential function chart:
InstanceName.SFC.SfcName.ModulNo=X

• For ProVi:
InstanceName.PROVI.MessageType.ModulNo=X

The assignment to the module number is possible at any position in the
path. It is, therefore, not necessary to enter the entire string:

Character string Meaning

Device_01.Drill_Modul2.PROVI.Error.1=3 Only this message type is displayed in module 2.

Device_01.Drill_Modul2.PROVI.Error=3 All ProVi errors in this instance are displayed in module 3.

Device_01.Drill_Modul2.PROVI=3 All ProVi messages in this instance are displayed in
module 3.

Device_01.Drill_Modul2.SFC.Drill=4 Only this sequential function chart is displayed in
module 4.

Device_01.Drill_Modul2.SFC=4 All sequential function charts of this instance are
displayed in module 4.

Device_01.Drill_Modul2=5 All diagnoses of this instance of the POU are displayed in
module 5. This also applies to all instances of the POUs
declared in this POU.

Device_01=5 All diagnoses appearing in this program are displayed in
module 5. This also applies to all instances of the POUs
declared in this POU (in this example: Drill_Modul1 and
Drill_Modul2).

Fig. 4-111: Examples of module number assignments

It is always the last module assignment in an instance path that is the
decisive one. If, for example, the following assignments have been made:

Device_01.Drill_Modul2.SFC.Drill=4

Device_01.Drill_Modul2=3

Device_01=2

the diagnoses of the example are displayed in the following modules:

• Instance Device_01.Drill_Modul1

• ProVi error 1 in module 2

• ProVi message 1 in module 2

• Sequential function chart of drill 1 in module 2

• Instance of Device_01.Drill_Modul2

• ProVi error 1 in module 3

• ProVi message 1 in module 3

• Sequential function chart of drill 1 in module 4

4-88 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Password
The user logs in the system using the "Password / Login" menu item. By
logging in (see: User Management, WinPCL Rights, Remote
Programming), the actual user’s defined access rights are enabled.

The menu item also allows logout of the current user.

In addition to that, the current user can change the password with this
menu, but the defined authorizations cannot be changed.

Login

login.bmp

Fig. 4-112: "Tools / Password / Login" menu item

Login has to take place with the agreed user name and the corresponding
password.

Login is necessary to start the programming system and after expiry of
the password. The old password expires and has to be replaced by a new
one.

Note: Name and password must be case-sensitive!

Logout

logout.bmp

Fig. 4-113: "Tools / Password / Logout" menu item

The password is no longer effective after its expiration date and when the
user is logging out .

The "logout" is confirmed with the message window shown above.

WinPCL 06VRS WinPCL 4-89

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Change Password for "***"

ändern pw.bmp

Fig. 4-114: "Tools / Password / Change" menu item

The menu item "Change password for "***" " allows a password to be
changed for a user while the access rights defined in the user
management are kept valid.

The window shows the login name, the complete name and a description
of the user’s function after "Login"; this information cannot be changed.

A new password can be entered.

The new password is accepted after confirmation and after pressing of
the OK button.

Note: Name and password must be case-sensitive!

Fieldbus Configuration
It is possible to call the fieldbus configurators from the WinPCL interface
at two different locations:

• Menu Tools / Fieldbus configuration

• Using the IO editor's menu called by the right mouse button with
"Fieldbus configuration"

It is only possible to call up the fieldbus configuration, if a resource
window is active.

Presently, two different fieldbus configurators can be used. The
configurator to be used depends on the bus master to be configured.

• CMD (Phoenix) – Configuration of the Phoenix INTERBUS card

• Master_1

• Master_2, connection of a second INTERBUS master, whose bus
is not yet PCP-compliant. An extension by the second bus master
is only available after releasing version 06V02 / 23V02.

• SyCon (Hilscher) – Configuration of the Hilscher cards; here,
INTERBUS, PROFIBUS, DeviceNet and AS Interface are supported.

It is not possible to start the configurator several times. If the configurator
shall be opened for a further control, resource or another bus type, the
currently running version has to be terminated.

But it is possible to start CMD and SyCon at the same time.

4-90 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The data of the fieldbus configuration are always saved for the selected
resource. Thus, an own configuration for every resource can be saved.

This data are saved and restored when storing in an PLC archive.

If a configurator is started form WinPCL, the two configuration files "BG4
and INI" are generated in the root directory of drive C. The configurator
works with this files. After terminating the configurator the files are deleted
again and the changed configuration data are taken over in the data of
the resource.

Note: If the configurator is started stand alone, the data of a
resource can not be processed. There’s no possibility to open
the corresponding configuration files directly from the hard
disc.

The files generated in the root directory bear the name DeviceXX.BG4
and DeviceXX.INI, whereby XX corresponds to the control number, with
which communication takes place.

If WinPCL is started as remote programming system, the configurators
must be only installed on the programming computer. It is not necessary
to install the configurators on the control computer.

In the case of remote programming WinPCL must be opened as long as it
is worked with the configurator. As soon as WinPCL is closed, the current
configuration can be no longer stored.

Note: This applies only to remote programming. If WinPCL runs on
the control computer, you can close WinPCL after the start of
the configurator and save the configuration anyway.

If the configurator for a resource is started for the first time, an empty
configuration is automatically generated with the communications path
BRC.

But you can also use self-created configurations as standard. Please
consider the following aspects:

1. Don’t open the configurator from WinPCL.
2. Create the desired standard configuration.
3. Save this configuration in directory

..\Project_000\CustomData\Ressource (This directory is to be found
in the installation directory of WinPCL). The file name depends on the
used configurator and the used bus type (see Phoenix Contact
(CMD), Hilscher (SyCon), PROFIBUS, DeviceNet, AS Interface).

Note: As for the remote programming the standard configuration
files are searched on the programming PC and not on the
control PC.

Data Management

Remote Programming

Standard Settings

WinPCL 06VRS WinPCL 4-91

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

INTERBUS
To configure the INTERBUS two configurators can be used:

• Phoenix Contact (CMD)

• Hilscher (SyCon)

Depending on the used bus card the corresponding configurator has to be
selected.

Phoenix Contact (CMD)
If in the CMD tool BRC is set as communication path, a direct
communication (without serial cable) with up to two INTERBUS controller
boards is possible.

Note: If the CMD tool is opened from WinPCL this is the standard
setting. But this setting can be changed anytime and is still
available when the configuration of this resource is opened
again.

As the CMD tool needs the information, with which INTERBUS controller
board it is to communicate, direct communication with the INTERBUS
controller boards is only possible when they are called from WinPCL.

Note: Communication with the INTERBUS controller board is only
possible, if a valid PLC program with programmed INTERBUS
I/Os is executed in the control.

The CMD tool generates besides the BG4 file also an INI file with the
same name. This file must be copied in the corresponding directory as
default file (PlcCmdDefaultConfig.ini).

Note: The CMD tool only supports 8 signs as directory and file
names. Therefore, the files have to be stored under another
name and then, have to be renamed.

If "Preprocessing variables" is used in the standard
configuration, the CMD tool supports only 32 signs as
complete path and file name In this case the files have to be
stored in another directory, at first, and then, have to be
copied.

Communications Path

Own Standard Configuration

4-92 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Hilscher (SyCon)
If the BRC driver has been selected in the system configurator SyCon, a
direct communication (without additional cable) is possible by using the
fieldbus card.

As the SyCon needs the information, with which controller board it is to
communicate, direct communication with the controller board is only
possible when it is called from WinPCL.

Note: Communication with the Hilscher system configurator is only
possible, if a valid PLC program with progammed I/Os is
executed in the control.

The own standard files have to be saved under the name
PlcSyConDefault. Depending on the used bus type the ending is different.

• INTERBUS – PlcSyConDefault.ib

• PROFIBUS – PlcSyConDefault.pb

• DeviceNet – PlcSyConDefault.dn

• AS Interface – PlcSyConDefault.as

PROFIBUS
From WinPCL only Hilscher PROFIBUS cards can be configured with
SyCon.

DeviceNet
From WinPCL only Hilscher DeviceNet cards can be configured with
SyCon.

AS Interface
From WinPCL only Hilscher AS Interface cards can be configured with
SyCon.

Logic Analysis
This menu item starts the general "Logic analysis" tool.

The online help contains a detailed description of this tool.

Note: Now, the logic analysis is also available for remote
programming.

Driver

Own Standard Configuration

WinPCL 06VRS WinPCL 4-93

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

File-File Comparison
This menu item allows to compare WinPCL files, whereby the selected
files are compared in textual form. The differences are marked in terms of
colors.

With the option "Display only identic names" it is determined which of the
two following windows appear for the immediate file selection:

Option "Display only identic names"

FileFile_01.bmp

A: Files of the current variant, selected file PR PR_SFC_00
A1: File info on the selected file
B: Files of the variant selected for comparison
B1: File info on files with identic name of the second variant
C: Selection possibilities for second variant (variant of any control or

downloaded files of any control or remote connection or WinPCL
archive at any location)

D, E: Additional selection possibilities corresponding to field C
F: Rough comparison depending on time if equal "=" or unequal "<", ">"
G: Options: "Display only identic names" / With and without BAK files"

Fig. 4-115: Selection with option "Display only identic names"

With this option only files with identic names (and of the same type) can
be compared. The rough comparison in column F allows a pre-estimation
on the basis of the file time, if the file pairs are identic.

The file information is displayed for any selected pair (A1/B1).

4-94 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Option "Display only identic names" is deactivated

FileFile_00.bmp

A: Files of the current variant, selected file PR NONC_LIB
A1: File info on the selected file
B: Files of the variant selected for comparison PR NONC_LIB_01
B1: File info on files of the second variant
C: Selection possibilities for second variant (variant of any control or

downloaded files of any control or remote connection or WinPCL
archive at any location)

D, E: Additional selection possibilities corresponding to field C
F: Rough comparison depending on time if equal "=" or unequal "<", ">"
G: Options: "Display only identic names" / With and without BAK files"

Fig. 4-116: Selection with option "Free name assignment" ("Display only

identic names" is deactivated)

The forced pair formation for the identic name is canceled, if you deselect
option "Display only identic names".

In this case, it is possible to compare files with their BAK files or files with
renamed files or files which e.g., have been converted by a program in a
function block.

WinPCL 06VRS WinPCL 4-95

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection of Files of the Second Variant
Basically, the comparison starts from files of the current variant (or from
the basic directory).

Files of the second variant can be taken from different sources:

• Comparison with local files

FileFile_02.bmp

C: Selection possibilities for second variant (variant of any control)
D: Selection of one of the available installations
E: Selection of a variant of the selected installation

Fig. 4-117: Selection window for local files

You can select the controls entered in the system configurator in field D.
The current control is entered in bolt letters.

Field E shows the variants available for the selected control:

• FileFile_A: bold letters signify current variant (files on the left side)

• FileFile_B: blue bar signifies second variant (files on the right side)

The files can belong to the same control and in this case to the same
variant or to the same control and another variant or to another control.

• Comparison with "Downloaded files"

FileFile_03.bmp

C: Selection possibilities for second variant (folder "Downloaded files"
of any control)

D: Selection of one of the available installations
Fig. 4-118: Selection window for downloaded files

If a compound (resource with their programs...) is loaded in the PLC, the
source files compiled to this compound are automatically stored in folder
"Downloaded files" of the respective control.

Thus, the selection is restricted on the installation (control) because it has
only one suchlike folder.

4-96 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• Comparison with remote PC

Remote operation requires that a/any server (BTV) is controlled by a
client (notebook).

FileFile_04.bmp

C: Selection possibilities for second variant (remote operation to any
control)

H: Input of the PC name or its IP address, then "Connecting"
D: Selection of one of the available installations on the PC/IP reached

by remote connection
E: Selection of a variant on this installation

Fig. 4-119: Selection window for remote PC

Note: The selected server (BTV) must work with activated remote
PG interface.

• Comparison with archived files

WinPCL files can be combined as archives. The comparison can be
executed with files of such an archive.

FileFile_05.bmp

C: Selection possibilities for second variant (WinPCL archive)
I: Input or selection of archive name

Fig. 4-120: Selection window for archives

After setting of the archive file’s name, at first, the right window is still
empty. The archive files appear on the right side after clicking on "Open".

WinPCL 06VRS WinPCL 4-97

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Comparator Window
After starting the comparator the preset files are compared. The selected
files are exported as text files and compared line by line according to
content groups. The following window contains the comparison results:

FileFile_06.bmp

A: Rough structure of the file
B: Display of file selected on the left side of the starting window
C: Display of file selected on the right side of the starting window
D: Go to the start / to the previous difference / to the next difference / to

the end
E: Additional options

Fig. 4-121: Comparison result

The rough structure A contains the logic structure of the file as tree.

The pictograms before the sections have the following meaning:

Pictogram Meaning

Section identic, no differences

Differences in section

Missing details on the right side

Missing details on the left side

Fig. 4-122: Pictograms and their meaning

Columns B and C contain the textual description of the selected files.
Within the blocks specified by column A the texts are compared line by
line and sign by sign.

4-98 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The crossover from difference to difference can be accelerated by button
group D:

Buttons Meaning

|< Go to start

< Go to the previous difference

> Got to the next difference

>| Go to the end

Fig. 4-123: Buttons and its meaning

The options of group E "With comment" and "Only differences" allow an
actualization of the comparison result without leaving the window for the
identic files. Additionally to this, you have to activate button "Comparison".

If a comparison is executed "Without comment", the comments are not
included in the comparison and are displayed as inactive (gray).

If a comparison is executed with "Only differences", identic sections are
hidden.

For longer files you will find a slider at the right margin of field B and C.
The slider in field C allows to move field B and C synchronously, the slider
in field B allows to move the text in field B relative to field C.

4.8 Window

menue_fenster.bmp

Fig. 4-124: "Window" menu item

The "Window" menu item allows direct access to opened windows in
addition to the Windows standard commands:

• <Ctrl>+<F4>: Close the focused window.

• <Ctrl>+<F6>: Go to and focus the next window.

• <Shift>+<Ctrl>+<F6>: Go to and focus the previous window.

WinPCL 06VRS WinPCL 4-99

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Close
As is the case with <Ctrl>+<F4>, the focused window is closed. Before
the last window of a program organization unit is closed, the file is
checked to determine whether it has been modified; if yes, a safety
prompt asks whether the changed status is to be saved or not.

schließen.bmp

Fig. 4-125: Closing of the last window of a file

Close All
All opened windows are closed.

Before the last window of a program organization unit is closed, the file is
checked to determine whether it has been changed; if yes, a safety
prompt asks whether the changed status is to be saved or not.

Cascade

kaskadieren.bmp

Fig. 4-126: Cascade windows

The opened windows are arranged one behind the other. The front
window is focused.

4-100 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Tile Horizontally

horizontal.bmp

Fig. 4-127: Tile windows horizontally

The whole area that is available is equally divided among the opened
windows. The focused window is on top.

WinPCL 06VRS WinPCL 4-101

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Tile Vertically

vertikal.bmp

Fig. 4-128: Tile windows vertically

The whole area that is available is equally divided among the opened
windows. The focused window is on the left.

Minimize All Windows
With this command, all opened files are reduced to their minimum size
and are visible in the left area of the WinPCL window.

List of Windows

menue_fenster.bmp

Fig. 4-129: Minimize all windows

The list of opened windows shows for each window

• the number of the control,

• the editor and

• the type name or the complete instance name of the file.

The window number of the focused window is marked with a checkmark.

Any window can be accessed by double-clicking the mouse or using the
window number..

4-102 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

4.9 ? Help

menue_hilfe.bmp

Fig. 4-130: "? Help" menu item

The "? Help" menu item provides access to the online help.

Using Help <F1>, the term where the cursor is positioned is applied as
the search criterion and is then searched in the online help.

Using the Help Topics (Contents & Index), the search can take place in
the WinPCL online help through a structured table of contents or any
search criterion can be entered.

The "Special" and "Internals" submenus are only for service purposes.

In addition, a file password can be entered in the "Service" submenu. All
files connected with this password, can be opened and edited without any
restrictions.

System information on currently active components can be obtained by
activating the "Info about WinPCL" and "Info" submenus.

WinPCL 06VRS WinPCL 4-103

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Help <F1>
The <F1> help function represents the help on the search criterion. This
search criterion can be defined as follows:

• The term the cursor is currently positioned on is taken as search
criterion. (For example, the cursor may be positioned on the type
name of a function block in the declaration editor or on a function
name in the IL editor.)

f1_hilfe.bmp

Fig. 4-131: <F1> help on cursor position

• A blank position in an editor may be used as search criterion. In this
case, the online help refers to the editor description.

• A dialog where the <F1> key is pressed may be used as search
criterion. In this case, the online help refers to the window description.

• The value of the status display of S#ErrorTyp and S#ErrorNr may be
used as search criterion. In this case, the cause of the error and the
error type are displayed (cursor positioned on the numerical value of
the status display of the variable).

4-104 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Help Topics (Contents & Index)
This menu item can be used to call up the general online help.

hilfesystem.bmp

Fig. 4-132: Help topics on WinPCL

The WinPCL online help contains the following chapters:

The chapter "WinPCL" book provides an overview about the currently
available functions of the WinPCL menu.

The editors are treated subsequently.

Data types, functions and function blocks give help with regard to the
contents and to the standard and firmware elements.

Special
The "Special" menu item is for service purposes and does not contain any
menu items which are useful for the user.

Internals
The "Internals" menu item is for service purposes and does not contain
any menu items which are useful for the user.

WinPCL 06VRS WinPCL 4-105

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Service

Service.bmp

Fig. 4-133: Enable service

Entry of the password provides the corresponding access (edit / view) to
all files, which are protected with this password, without the password
window opening for each file.

Whenever a password is entered, its deletion is also enabled.

Info About WinPCL

Info zu WinPCL.bmp

Fig. 4-134: Info about WinPCL

This submenu contains detailed information about the version with date
and time; this allows a unique identification of the used version.

Information on the operating system of the respective control (there may
be several ones) is provided by the "PLC Information" menu item.

4-106 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Info

info_mtgui.bmp

Fig. 4-135: Info about "Multi Task Graphic User Interface (MTGUI)"

This window also contains copyright, Internet address and service phone
numbers.

Help on a Particular Error <Ctrl>+<F1>
If one of the editors shows an error by changing the color from blue to
red or gray - invalid, a plain text help can be called up by pressing the
<Ctrl>+<F1> keys. The cursor has to be placed on the respective line
first:

Fehlerhilfe.bmp

Fig. 4-136: Example of "Help on a particular error <Ctrl>+<F1>"

WinPCL 06VRS WinPCL 4-107

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Help on Declaration <Shift>+<F1>
If provided, the help on declaration <Shift>+<F1> can be used to call up
declaration information on the item where the cursor is positioned.

Example: the cursor is positioned on a function block type in declaration.

dekl_hilfe.bmp

Fig. 4-137: Example of "Help on declaration <Shift>+<F1>"

4-108 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

4.10 Miscellaneous

Language Conversion
The language can be set in the HMI main menu via
Start_Setup\Language Selection.

Language.bmp

Fig.. 4-138: Language selection

The current language is altered by changing a parameter in the
"Language.ini" file.

Note: Before changing the parameter, the Rexroth GUI must be
exited. The changes made will only be effective when the GUI
is restarted.

The "Language.ini" file resides in the installation path of the Rexroth GUI
in the "..\MTGUI\Config" (\WINPCL\Config) directory. The file can be
edited directly with a unicode-compatible text editor (e.g. Notepad).

The "ActLanguage = XX" parameter in the "General" section must be
changed, with XX being the appropriate language identification.

>*HQHUDO@
$FW/DQJXDJH '(
'HIDXOW/DQJXDJH (1

Language identifications comply with those specified in DIN / INN.

Language Language identification

German DE

English EN

Fig. 4-139: Language identification according to DIN / INN

Excerpt from the Language.ini
file:

Excerpt from the DIN / INN
language identification:

WinPCL 06VRS WinPCL 4-109

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Remote Programming
If decentralized control systems are used, the machines concerned, such
as transfer machines, machining centers, etc., must be equipped with
several PCs. One or several units (controls, such as MTC200, ISP200,
etc.) may be assigned to each PC. An Ethernet network is used to
establish the interconnected system.

If, e.g. for service or startup purposes, a notebook is incorporated in this
network, the PLC component of one of these controls can be remote-
controlled from the notebook.

Note: During installation, a dummy user is created initially, which
should be replaced by a complete installation.

The remote-controlled control itself can be operated in a different
software component (main menu, HMI, parameters, or the like), but not in
WinPCL as an alternative to the notebook.

Activation requires Activities on the Control Side (Server) and Activities on
the Notebook Side (Client).

Activities on the Control Side (Server)
Activation on the control side is effected on the basis of the Setup Menu
item of the main menu of the HMI GUI.

The respective user must have logged in as administrator in his system.

The AddON teleservice must be installed ("Start Setup / Start Teleservice
Setup").

The RAS server (WinNT component) must be installed.

mtgui_hauptmenueServer01.bmp

Fig. 4-140: Setup menu of an HMI GUI (WinMTC or WinISP)

The menu item selected serves

• to define the computer name and the IP address of the control,

• to activate / deactivate the remote control (<F2>),

• to display the state of the PG interface.

Purpose

4-110 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The information on "computer name" (and "IP address") must be entered
in the client-PC (notebook) to be used for remote programming.

mtgui_hauptmenueServer02.bmp

Fig. 4-141: Defining the computer name and the IP address

If the remote programming mode is activated, the user’s work in his own
WinPCL of the control is disabled. All other activities may be carried out
with the remote programming mode activated on the control.

Activities on the Notebook Side (Client)
Activation of the remote programming mode requires an appropriate
WinPCL from an ISPPG installation on the client side.

Calling the ISPPG opens the following dialog:

remote_auswahl01.bmp

Fig. 4-142: Dialog for entering the desired server name

After the server name (computer name of the control in the network, see
Activities on the Control Side (Server)) has been entered, the remote
connection to the desired server can be activated.

Note: At that time, the server must already be running with an
activated remote interface, otherwise an error message will be
emitted.

WinPCL 06VRS WinPCL 4-111

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The remote connection requires GUI and function interface versions
which are compatible with each other.

FI_Server_Hochlauf_01.bmp

Fig. 4-143: Function interface startup with display of test criteria

Thereafter, the password (Password) is requested, including a check of
the rights required for remote operation. If the version check is completed
successfully, WinPCL is started; if not, the startup procedure is stopped
with display of an error message.

Versionsfehler_Remote.bmp

Fig. 4-144: Error message in case of an unsuccessful version check

Remote Programming Rules
Remote programming requires the following:

• WinPCL, processing the sources (RE/PR/FB/FN…) of the server (your
BTV) and saving same on that server, is running on the client (your
notebook).

• The client causes download of the compilation products to the PLC of
the server.

The situation described affects the archive of files and compounds.

When selecting the archive destination (Archive), the programmer
decides whether the archive resides

• in the server (your BTV), or

• in the client (your notebook), or

• on a floppy disk in one of your disk drives, or

• at any other location in your network.

A firmware download, if becoming necessary on the server (your BTV), is
not possible during remote operation.

The required firmware must first be filed in an archive on the server (your
BTV) and then be transferred to the control using a server tool (Setup
Menu / Start Firmware Management).

Password Rights for Remote Operation
Remote operation requires that the user is accordingly enabled in the user
management (Setup Menu / Start User Management).

Version check in case of remote
programming

Archives

Firmware download

4-112 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

User Management, WinPCL Rights, Remote Programming
The user management provides a dialog for assigning various rights, in
addition to the "General" rights to "WinPCL". To view the rights of any
user "n", login is only permitted with "supervisor" status (only he may view
and alter any assigned rights).

Rechte_allgemein.bmp

Fig. 4-145: General rights of a user "n"

Rechte_WinPCL.bmp

Fig. 4-146: WinPCL rights of user "n"

WinPCL 06VRS WinPCL 4-113

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

4.11 Keys and Key Combinations

This sections contains a summary of all key combinations currently used
in WinPCL.

<Ins>

Toggling of insert / overwrite.

Common delete key, the exact usage is described in the editors.

<Esc>

• Escape key for running commands,

• for closing temporary windows.

<Tab>, <Shift>+<Tab>

Toggling of ladder diagram and instruction list for the current network.

4-114 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

F Keys and Their Alt / Ctrl / Shift Combinations

Key <Shift>+key <Ctrl>+key <Alt>+key

F1 General help on cursor
position

Declaration help,
interface of
data types,
functions or function
blocks,
display of declaration
comment

Calls up of the "Error
help";
additional information on
color-coded error

F2 Goes to the
implementation of the file,
which is opened in the
focused editor window

Goes to the import
overview, which belongs
to the file, that is opened
in the focused editor
window

Goes to the declaration of
the file, which is opened in
the focused editor
window.

F3 Status display of multi-
element variables (array
or structure)

Goes to "SFCs" (list of all
SFCs and SFC elements)

F4 Closes the focused
window

Closes the programming
system; prompts whether
changed files have to be
stored

F5

F6 Moves to the next window

F7

F8 Permits viewing and
forcing of variables

F9 Download of the current
resource (Compiler /
Selection of the current
resource) including the
files pertaining to it to the
preset control (File /
Selection of current
control)

F10 Goes to the local pop-up
menu

Fig. 4-147: List of F key combinations

New keys / key combinations are gray.

WinPCL 06VRS WinPCL 4-115

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Alt-Key Combinations
<Alt>

Goes to the first menu item (file) of the main menu.

<Alt>+<Space>

Opens the system icons.

<Alt>+<C>

Opens the compiler menu item:

• Compilation for file / necessary files / complete compilation starting
from the focused file

• Compilation of necessary files / complete compilation starting from the
current resource

• Selection of the current resource

<Alt>+<E>

Opens the "Edit" menu item:

• Copy, cut, insert blocks, delete

• Find, find next, replace

<Alt>+<F>

Opens the "File" menu item:

• Create new file, open existing files

• Selection of current control, variant selection for control 00

• Save, save as, save all

• Properties of the focused file

• Print, archive

• Import, export

• Exit

<Alt>+<S>

Opens the "Start" menu item:

• Download "xx" in control "yy"

• Status display on / off

• Reset of the control

• Forcing variables

• Status display: ARRAYs / Structures

4-116 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

<Alt>+<T>

Opens the "Tools" menu item:

• Options

• PLC information

• Event display

• System Error Display

• Miniature control panels

• Diagnosis module assignment

• Password

<Alt>+<V>

Opens the "View" menu item; transition to the individual editors:

• Implementation, declaration

• On resource level: IO editor

• SFC list, step list, transition list, action list

• Cross reference list, import list

• Tree representation for the current system

<Alt>+<W>

Opens the "Window" menu item:

• Close focused window, close all windows; if file contents have been
modified, a saving prompt appears.

• Cascade windows, tile windows horizontally, vertically, minimize all
windows.

• List of windows

<Alt>+Number

Goes to the respective command in the footer.

<Alt>+<Enter>

Opens a selection window instead of entering a name. ...

<Alt>+<?>

Opens the "Help" menu item:

<Alt>+<TAB>

Toggling the Windows applications (to the right).

<Shift>+<Alt>+<TAB>

Toggling the Windows applications (to the left).

WinPCL 06VRS WinPCL 4-117

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Ctrl-Key Combinations

<Ctrl>+<C>

Block command, copies the block selected to the Windows clipboard.

<Ctrl>+<V>

Calls up the project navigator.

<Ctrl>+<F>

Finds for a character string

<Ctrl>+<E>

Enters or modifies the implementation comment on a particular LD
element, with the cursor positioned on that element in the ladder diagram.

<Ctrl>+<H>

Replaces a character string by another string.

<Ctrl>+<P>

Prints the editor contents.

<Ctrl>+<R>

Repeats the last search, the last replacement.

<Ctrl>+<S>

Saves the focused file, the file time is the time of the last modification.

<Ctrl>+<V>

Block command, pastes a block from the Windows clipboard.

<Ctrl>+<X>

Block command, cuts the block selected and stores it to the Windows
clipboard.

<Ctrl>+<Enter>

Branches to a function block, a function, an SFC

4-118 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

4.12 Pictograms

Essential information is provided in the form of pictograms which are
constantly kept on a current level.

Operating modes:

Pikto_01.bmp

Fig. 4-148: Operating modes

The following operating modes are possible:

Pictogram Status Comment

No The file is in the Edit mode; online edit limit is already
exceeded; variables and SFCs are initialized after
the download.

Yes The file complies with the code running in the control;
the status of the variable is displayed.

In part Single networks have been changed; their status
cannot be displayed; the other ones comply with the
code in the control, their status is available.

No Edit mode; transmission to control disturbed.

No Online mode; transmission to control disturbed.

No Status; transmission to control disturbed.

No Edit mode; branching path (from the resource to the
current instance) unknown, or file loaded directly.
The file belongs to the current compound.

No Single networks have been changed.
Branching path (from the resource to the current
instance) unknown, or file loaded directly. The file
belongs to the current compound.

No The file complies with the code running in the control.
Branching path (from the resource to the current
instance) unknown, or file loaded directly. The file
belongs to the current compound.

No The file does not belong to the current compound.

Fig. 4-149: Operating modes - indication in relation to the particular editor

WinPCL 06VRS WinPCL 4-119

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Properties:

The pictograms listed below are used in SFCs (list of SFCs / steps /
transitions / actions):

pikto_02.bmp

Fig. 4-150: SFCs with pictograms

Pictogram Comment

Initial step of an SFC

IndraStep operating modes (mode control)

Network and SFC properties are used (see ProVi Messages
(Diagnosis in LD / IL Networks) and SFC diagnosis)

, Boolean and negated Boolean actions

, Invalide absolut addressed Boolean action,
Invalide negated absolut addressed Boolean action,
(Declaration of the Boolean variable has been deleted.)

Arrange action processing order manually,
move current action upwards

Arrange action processing order manually,
move current action downwards

Action processing order rearranged manually, so that the
order does not correspond to the SFC graphic any longer,
Reset action processing order

Fig. 4-151: Properties - indication in networks and SFCs

4-120 WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Program organization units and data types:
The pictograms listed below are used to differentiate between program
organization units and data types.

The first column lists the symbols for the particular user POU / type and
the symbol for a standard or firmware POU / type.

The color-coding in the second column indicates that the particular file
fails to comply with the current WinPCL version or is defective in any
other way.

Pictogram of
POU / type

Pictogram of
defective POU /
type

Comment

, Resources (RESOURCE)

, Programs (PROGRAM)

, Function blocks (FUNCTION BLOCK)

, Functions (FUNCTION)

, Arrays (ARRAY)

, Structures (STRUCT)

, Type - general files

Fig. 4-152: POUs and data types

WinPCL 06VRS Declaration Editors 5-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

5 Declaration Editors

5.1 General Notes on the Declaration Editors

The programming system allows the usage of the following program
organization units (POU) in compliance with EN 61131-3:

• Resource, Declaration, Resource

• Program, Declaration, Program

• Function block, Declaration, Function Block

• Function, Declaration, Function

and

• Agreement and utilization of data types, i.e. the Declaration of
Structures (STRUCT) and the Declaration of ARRAYs.

Dependent on the different performance of the program organization
units, the declaration editor has to fulfill different requirements with regard
to declaration of

• variables,

that means the name of the variable, the data type, if necessary an
initial value specified by the user, a comment pertaining to the name
and - on program and resource level - the address, where the variable
is to be found or starts in the storage of the control.

In addition, the following instances must be declared within resources,
programs and function blocks:

• instances of function blocks (within programs and function blocks) and

• instances of programs (within resources),

that means, the storage space required for archiving the data set of the
respective instance must be reserved.

In addition to other functions, all declaration tools allow the access to
options, provide the possibility of displaying the status while the program
is running, and have common editing features. This effects a change of
the font color in case of a faulty entry and assists the user actively with
online help.

5-2 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

5.2 Structure of the Declaration Part

The declaration part serves for declaring variables and function block
assignments before they are used in the implementation.

Deklaration_01.bmp

Fig. 5-1: Declaration part of a program

The declaration editor is structured in columns. The contents of the
individual columns is stated in the gray header of the declaration editor.

1. Column: Name
Here are the names of the declared variables or the names of the function
blocks applied for usage (assignment names). They may not exceed a
length of 9 characters and must start with a letter.

2. Column: AT
The column is only used for programs and resources and contains the
absolute address which is assigned to the name in the first column.
For single-element variables, the variable is below the given address, for
multi-element variables (structures, arrays, character strings) the variable
starts at the given location.

3. Column: Type
Enter the type for variables and the function block type for function blocks.
If the address clearly identifies the variable type (Boolean inputs and outputs,
BYTE, WORD, DWORD), it is not necessary to expressly specify the type.
But it may be specified, if desired.

4. Column: :=
This column is provided for default values specified by the user. This value
must be compatible with the variable type. Moreover, this column is used to
display the status of elementary variables, when a program is running on
the PLC; in this case, the default value is cross-faded (Status Display in the
Declaration Editor).

WinPCL 06VRS Declaration Editors 5-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

5. Column: Comment
This column is intended for entry of the declaration comment which is
allocated to the variable name or to the assignment name.
For a better structure, complete comment lines or empty lines can be
inserted, regardless of the actual declarations.

A declaration line must not be absolutely complete at once or must not
instantly have the correct syntax. The user is guided to this target by
means of variations in the font color (described below), because an
executable program requires a correct declaration.

Editing Features, Varying Font Color in the Declaration Editor
Operating mode: Edit

When the entry is made, the font line first appears in white on a blue
background. The line is untested at that moment.

Dekl_Zeile während Eingabe.bmp

Fig. 5-2: Declaration line during the entry

The line is checked for correctness when exiting the line. The font color
changes in case of an error:
If there is no error, the basic color of the font is dark blue, the comment is
middle-blue.

Dekl_Zeile nach Eingabe_ok.bmp

Fig. 5-3: Declaration line after the entry is completed - without errors

Incorrect names, data types, initial values or their combination are shown
in red. The remaining text within such an incorrect line is shown in gray.
Essential combinations are shown below:

Dekl_Zeile Konflikt Datentyp_Adresse.bmp

Fig. 5-4: Conflict between absolute address of variable and data type

If the error is not detected directly, position the cursor on the line and
press <Ctrl>+<F1> for online help:

Dekl_Zeile Fehlerhilfe.bmp

Fig. 5-5: Online help

5-4 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Multiple use of a name during the entry or after copying of a block results
in an error. The first use is accepted, the second and all other uses are
marked as an error. Help can be called up by pressing <Ctrl>+<F1>:

Dekl_Zeile Name mehrfach.bmp

Fig. 5-6: Error caused by multiple use of a name

Declaration Footer Commands
The footer commands support the work in the declaration editors. They
can be activated by pressing <ALT>+numeric key.

Keys Name Column Selection window Used in:

<ALT>+<1> Basis TYPE Selection Window, Elementary Data Types RE, PR, FB FN, AR, ST

<ALT>+<2> Array TYPE Selection Window, ARRAYs RE, PR, FB FN, AR, ST

<ALT>+<3> Structure TYPE Selection Window, Structures RE, PR, FB FN, AR, ST

<ALT>+<5> FB TYPE Selection Window, Function Block Types PR, FB

<ALT>+<6> PR TYPE Selection Window, Programs RE

You can open the respective selection windows by pressing the above
mentioned key combinations.

Selection Window, Elementary Data Types
The footer command "1-Basis" opens the selection window for elementary
data types. They can be represented as list (space saving) or with detail
information.

Basis_Auswahl.bmp

Fig. 5-7: Selection window "Basis types"

The name of the desired data type can be entered in the input field. While
entering letter by letter of the name the cursor in the selection window
jumps to the respective item with the corresponding initial letters.

Chapter "Data Types in WinPCL" contains information about the data type
contents.

WinPCL 06VRS Declaration Editors 5-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, ARRAYs
The footer command "<Alt>+<2>-ARRAY" opens the selection window for
the ARRAYs. They can be represented as list (space saving) or with detail
information.

If the option "Preview" is selected, a graphic representation of the ARRAY
(interface) appears.

As source the information "Standard library" / "Current work directory" is
indicated.

Felder.bmp

Fig. 5-8: Selection window, ARRAYs

The name of the desired ARRAY can be entered in the input field. While
entering letter by letter of the name the cursor in the selection window
jumps to the respective item with the corresponding initial letters.

With "Subset" you can also select structures or all data types instead of
ARRAYs.

Chapter "Data Types in WinPCL" contains information about the data type
contents.

5-6 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Structures
The footer command "<Alt>+<3>-Structures" opens the selection window
for the structures. They can be represented as list (space saving) or with
detail information.

If the option "Preview" is selected, a graphic representation of the
structure (interface) appears.

As source the information "Standard library" / "Current work directory" is
indicated.

Strukturen.bmp

Fig. 5-9: Selection window, structures

The name of the desired structure can be entered in the input field. While
entering letter by letter of the name the cursor in the selection window
jumps to the respective item with the corresponding initial letters.

With "Subset" you can also select ARRAYs or all data types instead of
structures.

WinPCL 06VRS Declaration Editors 5-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Function Block Types
The footer command "<Alt>+<5>-FB" opens the selection window for the
function block types. They can be represented as list (space saving) or
with detail information.

If the option "Preview" is selected, a graphic representation of the function
block type (interface) appears.

As source the information "Standard library" / "Current work directory" is
indicated.

FB_Typ_Auswahl.bmp

Fig. 5-10: Selection window, function block types

The name of the desired block type can be entered in the input field.
While entering letter by letter of the name the cursor in the selection
window jumps to the respective item with the corresponding initial letters.

Note: If there are FBs in the library and if they also exist as user
function block, it is possible to select one of them. Using the
one excludes using the other.

5-8 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Programs
The footer command "<Alt>+<6>-PR" opens the selection window for the
program types. They can be represented as list (space saving) or with
detail information.

If the option "Preview" is selected, a graphic representation of the
program (interface) appears.

As source the information "Standard library" / "Current work directory" is
indicated.

PR_Auswahl.bmp

Fig. 5-11: Selection window, programs

The name of the desired program can be entered in the input field. While
entering letter by letter of the name the cursor in the selection window
jumps to the respective item with the corresponding initial letters.

WinPCL 06VRS Declaration Editors 5-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Status Display in the Declaration Editor
Status information is shown for all elementary variables in the declaration
editor in the combined column for initial value / status:

Dekl_Zeile Status.bmp

Fig. 5-12: Status in the declaration editor

Status information of function blocks can be called up by a double click or
<Ctrl>+<Enter> on the instance.

Further ways to get status information are:

• Start / Force <Shift>+<F8> for elementary variables
(ANY_ELEMENTARY)

• Start / Status ARRAYs / Structures <Shift>+<F3>

5-10 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Declaration Editor Options
The appearance of the declaration editor can be changed using the
"Extras / Options" menu item. The following options are available:

Group Option Meaning

Desktop Restore size and position during startup The desktop is restored in the same size and position.

Restore MDI window during startup MDI windows are opened in same order when restarting the
system

Auto save Allows the automatic saving of the current file in presettable
time intervals without any prompt.

Sound Allows the activation or deactivation of a beep sound.

View / All Automatic take-over of column width
change

Restoring of the column with same width.

Apply column width modifications
automatically

Comments, that have been entered in the respective
declaration line are also indicated in the implementation.
The implementation can be changed; the comment is then
doubled, the declaration line remains unaffected.

Variable display Is not relevant for the declaration.

Display of absolute variables The user can select from I/Q, E/A and I/O for absolute
addresses.

Truncating very long texts Texts and numbers can be truncated to the right or left, and

Truncating very long numbers can be represented with or without "..." marking.

View / DECL Column width for the individual columns Name 100

(with default values) AT 60

Type 60

Default value 60

Comment 230

WinPCL 06VRS Declaration Editors 5-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Pop-up Menu, Declaration Editor <Shift>+<F10>

This pop-up menu contains the essential commands for this editor. It can
be called up by pressing the right mouse button or the <Shift>+<F10>
keys.

Menu items Explanation

Open Branch, also <Ctrl>+<Enter>

Delete unused identifier Finding and Deleting Unused Declarations (variables and function block
instances)

Sort Sorting the declaration lines marked in the block by
names/AT/TYPEs/default values/comments

Import declaration The ASCII file selected from the "WINPCL" text files is attached in sections
to a possibly existent declaration.

Export declaration The content of the declaration editor is exported as ASCII file and stored in
the folder "WINPCL text files".

Syntax text List of all errors in the current editor. You can move to the location where
the error occurred by double-clicking the mouse or pressing the
<Ctrl>+<Enter> keys.
Subsequent import of types, which were not available at the time of
declaration. (The data type or function block was created after the
declaration line has been written. The type is indicated in red; error; the
type is searched again in the syntax test. If found, the error is corrected.)

Error help The line, where the cursor is positioned, is tested for correct syntax. If an
error is detected,
this error is explained, also possible with <Ctrl>+<F1>.

Declaration help Description of the interface of the data type or of the function block type of
the current line.

Cross reference help List of all places where the variable is used (Cross Reference List,
Declaration Editor).
You can move to the place of use by double-clicking the mouse or by
pressing the <Ctrl>+<Enter> keys.

Force Allows the entry of a variable name. The value of the variable is indicated
and
can be forced once. The window remains open and the process can be
activated again.
Forcing takes place between the update of the input variables and the
start of the program code execution.

Status ARRAYs / Structures Status display for the elements of an array or a structure.
Selection is done through a tree structure till the specific element is
reached.

Print current window Printing of the editor contents(<Ctrl>+<P>)

Options Presetting of the editor appearance (Declaration Editor Options)

Internals Search for errors in the programming system, to be used only if approved
by the service.

5-12 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Block Commands, Declaration Editor
Select the text by pressing and holding the SHIFT KEY while using the
appropriate arrow key or by pressing and holding the left mouse button
while dragging it across the text.

Extending the selection Key combination

One character to the right <Shift>+ arrow key <to the right>

One character to the left <Shift>+ arrow key <to the left>

To the end of the line <Shift>+<End>

To the beginning of the line <Shift>+<Home>

Down by one line <Shift>+ arrow key <downward>

Up by one line <Shift>+ arrow key <upward>

Down by one page <Shift>+<Page down>

Up by one page <Shift>+<Page up>

Deletion of text Keys

Deleting the character to the left of the
cursor

BACKSPACE KEY

Deleting the character to the right of
the cursor

Copying and moving of text Key combination

Copying the text selected to the
clipboard

<Ctrl>+<C>

Moving the text selected to the
clipboard

<Ctrl>+<X>

Pasting the contents from the
clipboard

<Ctrl>+<V>

Note: When using the copy and paste function, the names of the
variables or instances are doubled. This is a faulty condition.
Result: Varying font color.

Note: When using the cut function, variables or instances are
missing, at least temporarily. This can result in a faulty
condition in the implementation. Result: Varying font color.

WinPCL 06VRS Declaration Editors 5-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Search and Replace, Declaration Editor

This function is in the first version and provides the features of a text
editor:

Dekl_Suchen.bmp

Fig. 5-13: Find function in the declaration editor

Finding and Deleting Unused Declarations
Using the pop-up menu (<Shift>+<F10> or right mouse button) in the
declaration editor, unused variables and function block instances can be
found and then deleted.

Decl_ungenutzt.bmp

Fig. 5-14: Finding and deleting unused declarations

5-14 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Here, the (current) total number of unused declarations is defined. Any
declaration in a red frame is offered for deletion. As an alternative, all
unused declarations can be deleted.

Note: The "Yes, all" button refers to the following unused
declarations. Declarations already having been confirmed with
"No" will remain preserved.

The following areas are searched: "VAR...END_VAR", "VAR
RETAIN...END_VAR" and "VAR EXTERNAL...END_VAR".

Cross Reference List, Declaration Editor
Contrary to the cross references of the pop-up menu, the overview
activated via "View / cross reference list" lists all of the variables. Of
course, only variables from lines with the correct syntax can be resolved
by their place of use. However, all faulty names or names with double
declaration are displayed and can, thus, be reached with by double-
clicking the mouse or pressing the <Ctrl>+<Enter> keys.

Dekl_Zeile Querverweisliste.bmp

Fig. 5-15: List of cross references to the declaration

Documentation, Declaration
The documentation (printed from the editor, <Ctrl>+<P>) is created using
the column widths specified under Extras \ Declaration Editor Options \
View \ Declaration.

optionen_ansicht_dekl.bmp

Fig. 5-16: Options, declaration

WinPCL 06VRS Declaration Editors 5-15

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The "Apply" button activates the column widths set for the declaration
editor. The width of the column can be entered either in the window
shown above or preset in the editor by dragging the headers.

The "Standard" button resets the default values.

The "OK" button applies the setting and closes the dialog window.

The "Cancel" button closes the window; the previous values are kept.

Detailed information on the real print process and the features is to be
found in the main chapter on WinPCL.

5.3 Declaration, Resource

The declaration editor on resource level serves for

• declaring variables, if necessary with retain properties; the variables
can be linked to an absolute address;

• releasing variables as global variables, which can be used in the
program instances and their FB instances which belong to the
resource;

• defining tasks;

• declaring program instances, which have to run within the resource
under management of the tasks defined above.

Note: The name of a resource may not exceed a length of 32
characters.

If this length is exceeded, excess characters may be cut off
outside of WinPCL.

Areas in the Declaration Editor (Resource)

Area Comment

Declaration comment The lines between resource nn and VAR are intended for comments on the
resource for defining the intended use, changes etc.

VAR ... END_VAR Variables with standard properties, bound to an absolute address, if necessary

VAR RETAIN ... END_VAR Variables with retain properties, bound to an absolute address, if necessary

VAR_GLOBAL ... END_VAR Variables released for global use in the complete resource

TASK Definition of the necessary tasks by specifying

Cyclic task • Name, enable (release), priority, comment

Time-controlled task • Name, enable (release), priority, interval, comment

Edge-controlled task • (Not enabled yet)

PROGRAM Definition of program instances and assignment to the tasks

• Name of the instance, with (task assignment), type (program type), comment

5-16 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Structure of the Declaration Lines
VAR END_VAR

Name AT TYPE := Comment

Name of a variable Absolute address, if
necessary: %I, %Q, %M

Data type Initial value , not for
%I-variable

Comment

Variables with %I-binding must not be overwritten.

VAR RETAIN ... END_VAR

Name AT TYPE := Comment

Name of a variable Absolute address, if
necessary: %R

Data type Initial value Comment

VAR_GLOBAL ... END_VAR

Name AT TYPE := Comment

Name of a variable
which is declared
in VAR or VAR
RETAIN

Echo of the entries specified at the original place, not changeable

TASK

Name Enable Priority Interval Comment

Name of the task Enable
(variable or TRUE)

Lowest: 65535 Empty Cyclic task

Name of the task Enable
(variable or TRUE)

Highest: 0
Lowest: 65534

Constant (TIME) Cyclic task, restart
according to interval

Limitations:

• No more than 8 tasks are permitted, with at least one cyclic task being
necessary.

• The highest priority of a task is zero, the lowest one 65 535.

PROGRAM

Name With Type Comment

Name of the
instance

Task name Program type

Limitations:

The total number of programs is limited to 120.

WinPCL 06VRS Declaration Editors 5-17

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Declaration Footer Commands, Resource Level
can be activated with <ALT>+numeric key.

Keys Name Column Meaning

<ALT>+<1> Basic TYPE Selection of elementary data types

<ALT>+<2> Array TYPE Selection of ARRAYs

<ALT>+<3> Structure TYPE Selection of structures

<ALT>+<6> PR TYPE Selection of program types

Other Keys and Key Combinations

Key combination Column Meaning

<Ctrl>+<Enter> or double-click Name Branch to instance

<Ctrl>+<Enter> or double-click TYPE Branch to instance

<Ctrl>+<F1> all Online help in case of syntax errors

<Shift>+<F1> TYPE Declaration help about the type

Structure of the Declaration Part of a Resource (Example)

Dekl_Ressource.bmp

Fig. 5-17: Declaration part of a resource

5-18 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Comments on the entries:

Area Entry Comment

Declaration comment

VAR Diag_Array Array, declared on resource level

FastEnable Boolean variable with initial value TRUE defined on resource level

VAR_GLOBAL Diag_Array Globally enabled, can be used in all PR and FB via VAR-external access

FastEnable Globally enabled, can be used in all PR and FB via VAR-external access, here
especially for enabling the 2-ms tasks

TASK Basic No interval, runs in cycles, lowest priority, background task, always enabled

Fast 2-ms interval, is started every 2 ms, if enabled with FastEnable , high priority,
interrupts basic task

PROGAM PR1 Background program, can activate and deactivate the Fast Task via VAR-
external FastEnable

PR2_fast Program started every 2 ms, can deactivate the Fast Task via VAR_External
FastEnable, but not reactivate it!

Fig. 5-18: Comments on figure 2-11

5.4 Declaration, Program

On program level, the declaration editor serves

• for declaring input and output variables of the program (not enabled),

• for declaring variables, which can be used within the program; the
variables can be bound to absolute addresses and can have additional
retain properties,

• for declaring pointers for internal use,

• for declaring function block instances, which can be immediately used
in the program; the instances can have additional retain properties,

• for declaring external variables which were enabled as global variables
on resource level and are to be used in the program.

Areas in the Declaration Editor (Program)

Area Properties Comment

Declaration comment The lines between PROGRAM nn and VAR_INPUT are intended for comments on
the program for defining the intended use, changes etc.

VAR_INPUT ... END_VAR
(not enabled)

External supply
no writing

Variables, absolute address binding forbidden

VAR_OUTPUT ... END_VAR
(not enabled)

Delivers information to the
outside

Variables, absolute address binding forbidden

VAR END_VAR Standard Function block instances - standard,
Variables - standard, absolute address binding
 possible
Pointer

VAR RETAIN ... END_VAR Retain properties Function block instances - with retain properties;
variables with retain properties, absolute address
binding possible

VAR_EXTERNAL ... END_VAR On resource level defined
as global with standard or
retain properties

Variables, absolute address binding on resource level
possible

WinPCL 06VRS Declaration Editors 5-19

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Structure of the Declaration Lines
VAR_INPUT ... END_VAR (disabled)

Name AT TYPE := Comment

Name of a variable
(not enabled)

Disabled Data type Initial value possible Comment

VAR_OUTPUT ... END_VAR (disabled)

Name AT TYPE := Comment

Name of a variable
 (not enabled)

Disabled Data type Initial value possible Comment

VAR END_VAR

Name AT TYPE := Comment

Name of a function
 block instance

Disabled Function block type Disabled Comment

Name of a variable Absolute address, if
necessary: %I, %Q, %M

Data type Initial value , not for
%I-variable

Comment

Name of the
pointer

Disabled Data type Disabled Comment

Variables with %I-binding must not be overwritten.

VAR RETAIN ... END_VAR

Name AT TYPE := Comment

Name of a function
 block instance

Disabled Function block type Disabled Comment

Name of a variable Absolute address, if
necessary: %R

Data type Initial value Comment

VAR_EXTERNAL ... END_VAR

Name AT TYPE := Comment

Name of a variable Disabled Data type Disabled Comment

The name and type of the external variable must comply with a global
variable at the time when the currently compiled components are
connected. Any possible retain properties or binding to an absolute
address, with % write protection, are applied from the original declaration
to the resource.

5-20 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Declaration Footer Commands, Program Level
can be activated with <ALT>+numeric key.

Key combination Name Column Meaning

<ALT>+<1> Basic TYPE Selection of elementary data types

<ALT>+<2> Array TYPE Selection of fields / ARRAYs

<ALT>+<3> Structure TYPE Selection of structures / STRUCTs

<ALT>+<5> FB TYPE Selection of function block types

Other Keys and Key Combinations

Key combination Column Meaning

<Ctrl>+<Enter> or double-click Name Branch to instance

<Ctrl>+<Enter> or double-click TYPE Branch to instance

<Ctrl>+<F1> All Online help in case of syntax errors

<Shift>+<F1> TYPE Declaration help on the type

Structure of the Declaration Part of a Program (Example)

Dekl_Programm.bmp

Fig. 5-19: Declaration part of a program

WinPCL 06VRS Declaration Editors 5-21

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

5.5 Declaration, Function Block

On function block level, the declaration editor serves

• for declaring the input and output variables of the function block,

• for declaring variables, which can be used within the function block;
the variables can have additional retain properties,

• for declaring function block instances, which can be immediately used
in the function block; the instances can have additional retain
properties,

• for declaring pointers to be applied from outside and for internal use,

• for declaring external variables which were enabled as global variables
on resource level and are to be used in the function block.

Areas in the Declaration Editor (Function Block)

Area Properties Comment

Declaration comment The lines between function block nn and VAR_INPUT are intended for
comments on the function block for defining the intended use, changes
etc.

VAR_INPUT ... END_VAR External supply,
no writing

Variables, no absolute address binding
 possible,
Pointer

VAR_OUTPUT ... END_VAR Delivers information to
the outside

Variables, no absolute address binding
possible

VAR END_VAR Standard Function block instances,
Variables
Pointer

VAR RETAIN ... END_VAR Retain properties Function block instances,
Variables

VAR_EXTERNAL ... END_VAR On resource level
defined
as global with standard
or retain properties

Variables, absolute address binding and initial
value definition on resource level possible

Structure of the Declaration Lines
VAR_INPUT ... END_VAR

Name AT TYPE := Comment

Name of a variable Disabled Data type Initial value possible Comment

Name of a pointer Disabled Data type Disabled Comment

VAR_OUTPUT ... END_VAR

Name AT TYPE := Comment

Name of a variable Disabled Data type Initial value possible Comment

5-22 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

VAR END_VAR

Name AT TYPE := Comment

Name of a function
 block instance

Disabled Function block type Disabled Comment

Name of a variable Disabled Data type Initial value possible Comment

Name of a pointer Disabled Data type Disabled Comment

VAR RETAIN ... END_VAR

Name AT TYPE := Comment

Name of a function
 block instance

Disabled Function block type Disabled Comment

Name of a variable Disabled Data type Initial value possible Comment

VAR_EXTERNAL ... END_VAR

Name AT TYPE := Comment

Name of a variable Disabled Data type, elementary or
defined by the user

Disabled Comment

The name and type of the external variable must comply with a global
variable at the time when the currently compiled components are
connected. Any possible retain properties or binding to an absolute
address, with % write protection, are applied from the original declaration
to the resource.

Declaration Footer Commands, Function Block Level
can be activated with <ALT>+numeric key.

Key combination Name Column Meaning

<ALT>+<1> Basic TYPE Selection of elementary data types

<ALT>+<2> Array TYPE Selection of fields / ARRAYs

<ALT>+<3> Structure TYPE Selection of structures / STRUCTs

<ALT>+<5> FB TYPE Selection of function block types

Other Keys and Key Combinations

Key combination Column Meaning

<Ctrl>+<Enter> or double-click Name Branch to instance

<Ctrl>+<Enter> or double-click TYPE Branch to instance

<Ctrl>+<F1> All Online help in case of syntax errors

<Shift>+<F1> TYPE Declaration help on the type

WinPCL 06VRS Declaration Editors 5-23

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

5.6 Declaration, Function

On function level, the declaration editor serves

• for declaring the input and output variables of the function,

• for declaring variables which can be used within the function.

Areas in the Declaration Editor (Function)

Area Properties Comment

Function value (main output) Delivers information to
the outside

To be connected to a network, header of the function

Declaration comment The lines between function nn and VAR_INPUT are intended for comments on
the function for defining the intended use, changes etc.

VAR_INPUT ... END_VAR External supply,
no writing

First variable to be connected to a network, further
variables only to be connected to a value

VAR_OUTPUT ... END_VAR Delivers information to
the outside

Variable only to be connected to a value

VAR END_VAR Standard Variables - standard

Structure of the Declaration Lines

Header

FUNCTION Name TYPE

Code word Name of the function = name of the main output Type of the function = type of the main output

VAR_INPUT ... END_VAR

Name AT TYPE := Comment

Name of a variable Disabled Data type Disabled Comment

VAR_OUTPUT ... END_VAR

Name AT TYPE := Comment

Name of a variable Disabled Data type Disabled Comment

VAR END_VAR

Name AT TYPE := Comment

Name of a variable Disabled Data type Disabled Comment

5-24 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Declaration Footer Commands, Function Level
can be activated with <ALT>+numeric key.

Key combination Name Column Meaning

<ALT>+<1> Basic TYPE Selection of elementary data types

<ALT>+<2> Array TYPE Selection of fields / ARRAYs

<ALT>+<3> Structure TYPE Selection of structures / STRUCTs

Other Keys and Key Combinations

Key combination Column Meaning

<Ctrl>+<Enter> or double-click Name Branch to instance

<Ctrl>+<Enter> or double-click TYPE Branch to instance

<Ctrl>+<F> All Online help in case of syntax errors

<Shift>+<F1> TYPE Declaration help on the type

Structure of the Declaration Part of a Function (Example)

Dekl_Funktion.bmp

Fig. 5-20: Function "SELECT_INT"

The function has the following interface:

Interface SELECT_INT.bmp

Fig. 5-21: Interface of the function according to the declaration part

WinPCL 06VRS Declaration Editors 5-25

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

5.7 Declaration of Structures (STRUCT)

A structure consists of one or several elements, which can be of the
elementary type or can be a structure or an array. Each element has its
own name and, if it is of the elementary type, can have a user-defined
initial value. Structures and fields have their own initial values. In addition
to the declaration comment of the structure, each element can have its
own comment.

Structure of the Declaration of Structures (Example)

ST Werkzeug.bmp

Fig. 5-22: Declaration part of the structure "TOOL"

The declaration comment is added to the line specifying the name.
Of the four elements of the structure, "number" is defined with "99" by the
user; the standard value "0" or "FALSE" is assigned the other elements.
The name is ’ ’ (empty) .

Declaration Footer Command, Structure
can be activated with <ALT>+numeric key.

Key combination Name Column Meaning

<ALT>+<1> Basic TYPE Selection of elementary data types

<ALT>+<2> Array TYPE Selection of arrays

<ALT>+<3> Structure TYPE Selection of structures

<ALT>+<9> (* Element name Full line comment

Other Keys and Key Combinations

Key combination Column Meaning

<Ctrl>+<Enter> or double-click Name Branch to instance

<Ctrl>+<Enter> or double-click TYPE Branch to instance

<Ctrl>+<F1> All Online help in case of syntax errors

<Shift>+<F1> TYPE Declaration help on the type

5-26 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Pop-up Menu, Structure Editor <Shift>+<F10>
The popup menu contains the essential commands for this editor. It can
be opened by pressing the right mouse button or the <Shift>+<F10> keys.

Menu items Explanation

Import declaration The ASCII file selected from the "WINPCL" text files is attached in sections
to a possibly existent declaration.

Export declaration The content of the declaration editor is exported as ASCII file and stored in
the folder "WINPCL text files".

Syntax test List of all errors in the current editor. You can move to the place where the
error occurred by double-clicking the mouse or by pressing the
<Ctrl>+<Enter> keys.
Subsequent import of types, which were not available at the time of
declaration.

Error help The line, where the cursor is positioned, is tested for correct syntax. If an
error is detected,
this error is explained, also possible with <Ctrl>+<F1>.

Declaration help Description of the data type interface of the current line.

Force Allows the entry of a variable name. The value of the variable is indicated
and can be forced once. The window remains open and the process can
be activated again.
Forcing takes place between the update of the input variables and the
start of the program code execution.

Status ARRAYs / Structures Status display for the elements of an array or a structure.
Selection is done through a tree structure till the specific element is
reached.

Print current window Printing of the editor contents(<Ctrl>+<P>)

WinPCL 06VRS Declaration Editors 5-27

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

5.8 Declaration of ARRAYs

The elements of a field have a unique data type, which can be of the
elementary type or can be a structure or even a field itself. The user can
assign a unique initial value to all elements, if they are elementary.
Structures and arrays have their own initial values. The elements of an
array are arranged in dimensions (1 to 4 dimensions).

The lowest limit is always zero!

In addition to the declaration comment of the array, a comment can be
given for each dimension.

Structure of the Declaration of ARRAYs (Example)

Array with elementary elements

AR palette.bmp

Fig. 5-23: Declaration part of the elementary array "PALLET"

The declaration comment is added to the line with the name. All
dimensions start with the zero element. The unique data type is BOOL
The user sets the value for each element to TRUE.

Array with structured elements (type "TOOL")

AR Wechsler.bmp

Fig. 5-24: Declaration part of the structured array "T_CHANGER"

The declaration comment is added to the line with the name.
All elements are structured data types which have four elements.

5-28 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Declaration of Structures (STRUCT).
The elements of the structured data type have their own initial values.
"Number" is preset to "99" by the user; the standard value "0" or "FALSE"
is assigned to all other elements. The name is ’ ’ (empty) .

It is recommended to create the data type "TOOL" before declaring
"T_CHANGER". It is then automatically imported.

If it is missing, "TOOL" in "T_CHANGER" is changed into red color (type
unknown...). The import can be done subsequently, after "TOOL" has
been declared, by activating "Syntax test" in the pop-up menu of the editor
(<Shift>+<F10>).

Declaration Footer Command, ARRAYs
can be activated with <ALT>+numeric key.

Key combination Name Column Meaning

<ALT>+<1> Basic TYPE Selection of elementary data types

<ALT>+<2> Array TYPE Selection of fields

<ALT>+<3> Structure TYPE Selection of structures

<ALT>+<8> DIM TYPE Entry of dimensions

<ALT>+<9> (* Element name Full line comment

Other Keys and Key Combinations

Key combination Column Meaning

<Ctrl>+<Enter> or double-click Name Branch to instance

<Ctrl>+<Enter> or double-click TYPE Branch to instance

<Ctrl>+<F1> All Online help in case of syntax errors

<Shift>+<F1> TYPE Declaration help on the type

Pop-up Menu - ARRAY / Editor <Shift>+<F10>
The pop-up menu contains the essential commands for this editor. It can
be opened by pressing the right mouse button or the <Shift>+<F10> keys.

Menu items Explanation

Import declaration The ASCII file selected from the "WINPCL" text files is attached in sections to a
possibly existent declaration.

Export declaration The contents of the declaration editor is exported as ASCII file and stored in the
folder "WINPCL text files".

Syntax text List of all errors in the current editor. You can move to the place where the error
occurred by double-clicking the mouse or by pressing the <Ctrl>+<Enter> keys.
Additional import of types, which were not available at the time of declaration.

Error help The line, where the cursor is positioned, is tested for correct syntax. If an error is
detected, this error is explained, also possible with <Ctrl>+<F1>.

Declaration help Description of the data type interface of the current line.

Force Allows the entry of a variable name. The value of the variable is indicated and
can be forced once. The window remains open and the process can be activated
again. Forcing takes place between the update of the input variables and the
start of the program code execution.

Status ARRAYs / Structures Status display for the elements of an array or a structure.
Selection is done through a tree structure till the specific element is reached.

Print current window Printing of the editor contents(<Ctrl>+<P>)

WinPCL 06VRS Declaration Editors 5-29

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

5.9 Limitation of the Declaration of Function Blocks in the
Retain Area

In principle, the declaration of function blocks in the retain area is
permitted according to IEC-61131-3.

However, there are limitations which must be observed whenever Rexroth
system function blocks are used. The following list specifies the function
blocks which may not be declared in the retain area.

Timer function blocks
Programming of timer stages is not permitted in the retain area.

• TP

• TON

• TOFF

• FLASH

Serial interface
Function blocks for supporting serial interfaces in the PLC application
program:

• OPEN_COM

• CLOS_COM

• BTXX

• BTXX_2

Communication with other control components
Data exchange with other control components is achieved using function
blocks via special data channels in the common dual-ported RAM.
Usually, more than one communication cycle is required for data
exchange with the CNC.

The progress made in data exchange is mapped as state-machine in the
particular function block concerned. In other words, the internal state of
the function block depends on the state of the DPR. However, the DPR is
always re-initialized after a reset.

Current communication cycles will be lost. As a result, the state-machine
in the FB is invalid, if this FB has been declared to be remanent.

5-30 Declaration Editors WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The following function blocks may not be declared to be remanent:

MTCNC SYNAX

NC memory selection

SEL_MEM

ACT_MEM

Process data channel

AXD_WR

AXD_RD

DCD_RD

DCD_WR

MTD_WR

MTD_RD

NCVAR_RD

NCVAR_WR

OTD_WR

OTD_RD

TL_DELETE

TL_ENABLE

TL_MOVE

TL_RESET

TLBD_RD

TLBD_WR

TLD_WR

TLD_RD

TLED_RD

TLED_WR

MC_CHANGE_PHASE

MC_RD_PARAMETER

MC_WR_PARAMETER

MC_WR_LISTDATA

MC_DIAGNOSIS

MC_RD_LISTDATA

MC_RD_DATASTATUS

MC_ABORT_TRANSMISSION

MC_RW_PTR_TLG

MC_RD_PHASE

MC_RD_ATTRIBUTE

MC_RD_NAME

MC_RD_UNIT

MC_RD_MIN_VALUE

MC_RD_MAX_VALUE

MC_RD_ELEMENT

MC_WR_ELEMENT

MC_RD_ARRAY

MC_WR_ARRAY

MC_RW_ARRAY_TLG

Fig. 5-25: Coupling with other control components

Note: These blocks may neither be declared directly in the retain
area nor indirectly via blocks which are declared in the retain
segment themselves.

WinPCL 06VRS Instruction List Editor 6-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

6 Instruction List Editor

6.1 General Notes on the Instruction List Editor

The instruction list editor serves for entering and modifying the program
code (implementation) in programs, function blocks and functions in the
Edit and Online-Edit modes, as well as for indicating variable values at the
end of a PLC cycle in the Status mode and for unchanged networks in the
Online-Edit mode.

It allows instructions to be used in compliance with EN 61131-3 and
indicates text as an alternative to the graphic ladder diagram editor of the
system. Most of the instruction list constructs can be converted into ladder
diagram networks and vice versa with the <TAB> key.

6.2 Structure of an Instruction List Line

The IL line in the edit mode is divided into four columns (grid):

• Label

• Operation, also see "Instructions and Approved Data Types"

• Operands, upon request

• Comments on the current line

Label Operation Operand Comment

mLABEL: LD var_01 (*Fully used IL line with comment*)

(*Single or multi-line comment on the complete IL line*)

The following contents of IL lines are also possible:

• Empty line

• Label in empty line, at the beginning of a network (marginal marking)

If the status display is activated, a fifth column appears which is used to
indicate the value of the variable.

Depending on the position at which the cursor is located as well as the
preceding operators, it is possible to call the selection window via the
footer commands (with <ALT>+<number>).

6-2 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Operators
The footer command "<Alt>+<7>-OP" appears, if the cursor is positioned
in column 2, operators. The selection window for operators opens. They
can be represented as list (space saving) or with detail information.

Furthermore, subsets can be selected:

• All operators

• Logic operators

• Boolean operators

• Arithmetic operators

• Comparison operators

• Jumps

OP_Auswahl.bmp

Fig. 6-1: Selection window, operators

The name of the desired operator can be entered in the input field. While
entering letter by letter of the name the cursor in the selection window
jumps to the respective item with the corresponding initial letters.

WinPCL 06VRS Instruction List Editor 6-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Functions
The footer command "6-FN" appears, if the cursor is positioned in column
2. The selection window for functions opens. They can be represented as
list (space saving) or with detail information.

If the option "Preview" is selected, a graphic representation of the function
(interface) appears.

As source the information "Standard library" / "Current work directory" is
indicated.

FN_Auswahl.bmp

Fig. 6-2: Selection window, functions

The name of the desired function can be entered in the input field. While
entering letter by letter of the name the cursor in the selection window
jumps to the respective item with the corresponding initial letters.

6-4 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Instances of Function Blocks
The footer command "<Alt>+<5>-FB" appears, if the cursor is positioned
in column 3, operands, and the operation in column 2 is a subprogram
call.

• CAL, unconditional call

• CALC, conditional call, if the operation result is TRUE.

• CALCN, conditional call, if the operation result is FALSE.

The selection window for already declared instances of function blocks
opens. They can be represented as list (space saving) or with detail
information.

If the option "Preview" is selected, a graphic representation of the function
block instance (interface) appears.

In addition to the name of the instance its declaration comment is
indicated.

fb_auswahl.bmp

Fig. 6-3: Selection window, instances of function blocks

The name of the desired function block instance can be entered in the
input field. While entering letter by letter of the name the cursor in the
selection window jumps to the respective item with the corresponding
initial letters.

WinPCL 06VRS Instruction List Editor 6-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, SFCs
The footer command "<Alt>+<4>-SFCs" appears, if the cursor is
positioned in column 3, operands, and the operation in column 2 is an
unconditional call.

• CAL, unconditional call.

The selection window for already declared SFCs opens. They can be
represented as list (space saving) or with detail information.

If the option "Preview" is selected, a graphic representation of the SFCs
appears.

In addition to the name of the SFC its declaration comment is indicated.

SFC_Auswahl.bmp

Fig. 6-4: Selection window, SFCs

The name of the desired SFC can be entered in the input field. While
entering letter by letter of the name the cursor in the selection window
jumps to the respective item with the corresponding initial letters.

6-6 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Labels
The footer command "0-=>>(o)" appears, if the cursor is positioned in
column 3, operands, and the operation in column 2 is a jump.

• JMP, unconditional jump.

• JMPC, conditional jump, if the condition is fulfilled.

• JMPCN, conditional jump, if the condition is not fulfilled.

The selection window for already declared labels opens. They can be
represented as list (space saving) or with detail information.

Auswahl_Marke.bmp

Fig. 6-5: Selection window, labels

The name of the desired label can be entered in the input field. While
entering letter by letter of the name the cursor in the selection window
jumps to the respective item with the corresponding initial letters.

WinPCL 06VRS Instruction List Editor 6-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Variables
The footer command "1-VAR" appears, if the cursor is positioned in
column 3, operands, and an appropriate operation is listed in column 2
(e.g. LD, ST, ADD....). The selection window for operands opens.

Alternatively, the window can be called by pressing <ALT>+<Enter>. They
can be represented as list (space saving) or with detail information.

As subset you can select type-specific or all variables.

If the option "Preview" is selected, a graphic representation of the
variables appears.

In addition to the name of the variable its declaration comment is
indicated.

Multi-element variables (instances of structures, ARRAYs or FBs) are
marked by a preceded gray arrow. You can open this variables by double-
clicking or pressing <Enter> on the respective variable. The elements can
be (recursively) selected.

In future, a switch for the return path upwards to the instance name is
planned.

VAR_Auswahl.bmp

Fig. 6-6: Selection window, variables

The name of the desired variable can be entered in the input field. While
entering letter by letter of the name the cursor in the selection window
jumps to the respective item with the corresponding initial letters.

6-8 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Absolute Addressed Variables
When entering an absolute address – e.g. %I1.1.2 – WinPCL verifies, if a
name, that is linked with the address via a declaration exists in the validity
area of the file. If a name is found, it is indicated in the selection window.

When confirming the element obtains this name, when rejecting the
absolute address remains at the element.

The window is used in the IL editor to enter operands.

Auswahlfenster_Abs_Var_singl.bmp

Fig. 6-7: Window to select the absolute address

WinPCL 06VRS Instruction List Editor 6-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

6.3 Editing Features, Varying Color in the IL Editor

Operating modes: edit and online-edit.

The section of the line where editing takes place is first white on a blue
background while you do the entry.

AWL_Eingabe_00.bmp

Fig. 6-8: Entry of an IL line, editing of a variable

The color of the marginal marking on the left side changes from "gray",
e.g. correct normal condition to "yellow", that means the network was
modified. At this time the section is still untested.

AWL_Eingabe_01.bmp

Fig. 6-9: Entry of an IL line, variables identified as being correct, network still
untested, yellow marginal marking

Faulty operations, undeclared names or a combination of this, change
their color into red when you exit the edited section or the edited line. The
remaining text within such an incorrect line is shown in gray. If the error is
not detected directly, position the cursor on the line and press the
<Ctrl>+<F1> keys for online help.

AWL_Eingabe_03.bmp

Fig. 6-10: Entry of an IL line, operator identified as being faulty, network still
untested, yellow marginal marking

6-10 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The test whether neighboring lines in this network match is not carried out
unless you exit the network, e.g. by moving the cursor out of the network.
The marking at the left margin changes from yellow to gray, that means
everything is ok or to red, that means there is an error in the network. The
basic font color is dark-blue (no errors), the comment is middle-blue, the
left margin is gray.

AWL_Eingabe_02.bmp

Fig. 6-11: Network without errors after editing, marginal marking is gray

If faulty variables were not corrected before the network test, they are
indicated in red and the marginal marking is indicated in red too.

AWL_Eingabe_04.bmp

Fig. 6-12: Network faulty after editing, marginal marking is red

Errors remain visible in this manner. They must be eliminated before a
successful compilation run can be started, but do not affect normal
operation. A complete check, including labels and jumps, is carried out
during the compilation attempt or the syntax test (Pop-up Menu, IL Editor
<Shift>+<F10>).

WinPCL 06VRS Instruction List Editor 6-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

6.4 Options, IL Editor

The options , relevant for the instruction list editor can be selected by
means of the "Extras / Options" menu item:

Group Option Meaning

Desktop Restore size and position during startup The desktop is restored in the same size and position.

Restore MDI window during startup MDI windows are opened in the same order when restarting the
system.

Auto save Allows the automatic saving of the current file in presettable
time intervals without any prompt.

Sound Activation or deactivation of a beep sound.

View / All Apply column width modifications
automatically

Restoring of the column with same width.

Apply declaration comment in
implementation

Comments, that have been entered in the respective
declaration line are indicated in the implementation. The
implementation can be changed; the comment is then doubled,
the declaration line remains unaffected.

Variable display With symbols (name) or absolute (address).

Display of absolute variables The user can select from I/Q, E/A and I/O for absolute
addresses.

Truncating very long texts Texts and numbers can be truncated to the right or left, and

Truncating very long numbers can be represented with or without "..." marking.

View / IL Column width for the individual columns Label 70

(with standard values) Operation 70

Operand 110

Status 90

Comment 250

Fig. 6-13: IL editor options

6-12 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

6.5 Status Display in the IL Editor

AWL_Status.bmp

Fig. 6-14: Status display in the instruction list

Variable values at the end of a PLC cycle are indicated in the status
mode and for unchanged networks in the online edit mode.

For this, an additional column is inserted between the operand column
and comment column.

Further ways to get status information are:

• Start / Force <Shift>+<F8> for elementary variables
(ANY_ELEMENTARY)

• Start / Status ARRAYs / Structures <Shift>+<F3>

6.6 Online Editing in the Instruction List

The online edit feature in the present version permits to exchange the
code for a program, a function block or a function, without changing the
data of the particular POU concerned. A machine or plant can continue its
working cycle although the program code was changed.

Changes in the implementation of one program organization unit, which
require neither declaration nor imports, are allowed at present. All other
changes are not online capable.

WinPCL 06VRS Instruction List Editor 6-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Status of the POU >>Status<<

A running PLC program with activated status display is the initial condition
for online editing. In the following example, the instruction "ANDN
motor_left" for locking is to be added online.

Identification: "Status" is indicated in the right bottom corner.

online_awl_01.bmp

Fig. 6-15: Before the online editing

Status of the POU >>Online<<

The online editing mode is initiated by inserting a blank line. The color of
the marginal marking for the actual network changes from blue to yellow
(for colors see Chapter "Editing Features, Varying Color in the IL Editor").

Identification: "Online" is indicated in the right bottom corner.

online_awl_02.bmp

Fig. 6-16: Online editing, inserting an empty line

6-14 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

online_awl_03.bmp

Fig. 6-17: Online editing, filling in a line

Download of the change

Online changing is completed by downloading the changed code to the
control, using the "Start / Download "xx" in control "xx"" menu item or by
pressing <Ctrl>+<F9>.

Identification: "Status" is indicated in the right bottom corner.

online_awl_04.bmp

Fig. 6-18: Online editing completed with the download

WinPCL 06VRS Instruction List Editor 6-15

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Changes which are not online capable

At present, changes, which require neither declaration nor imports, are
allowed as online changes in the implementation of one program
organization unit .

Kind of change Operating
 mode

Deletion of a network Online

Deletion of a contact or an IL line Online

Insertion of a new network or a new IL line Online

Insertion or change of a contact, a coil, an instruction or the like Online

Insertion of labels or jumps Online

Insertion of an currently declared function block Online

Insertion of a function which was already used in the POU (new
imports are not online capable as yet!)

Online

Change of network properties of existing networks
(at least one network of the POU has to provide activated
network properties!)

Online

Change of network comments in IL / ladder diagram Online

New declaration or change of declaration of variables or
instances of programs / function blocks, as well as in all lists

Edit

Insertion or deletion of steps, transitions and actions Edit

First application of network properties or deletion of the last
network properties

Edit

Change of the action qualifier of an action block Edit

Change of comments in all lists, in SFCs, action blocks and in all
declarations

Edit

Changes in the IO editor Edit

Changes in a second file, if there is already one file in the online
edit mode

Edit

Fig. 6-19: Overview of online capable changes (selection)

6-16 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Edge Evaluation in the Instruction List
In analogy to the ladder diagram, networks in the IL can often be
simplified or at least represented more clearly by using transition
operations.

Here, the transition from one operation to an operation with edge
evaluation and vice versa represents an online change.

LD, OR, AND with Detection of Transitions (Edges)
For edge evaluation purposes, the LD, OR, AND operations can be
expanded to LD>, OR>, AND> (positive edge, "P" ladder) or LD<, OR<,
AND< (negative edge, "N" ladder).

The figure below shows examples of use in a ladder diagram.

Edge contacts with R_TRIG / F_TRIG

Fig. 6-20: Comparison of edge contacts and R_TRIG / F_TRIG in LD and IL

Note: Each IL line with edge evaluation has its own old value!

The pulse is active for exactly one PCL cycle, i.e. the network
must be executed at least twice.

WinPCL 06VRS Instruction List Editor 6-17

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ST for Detection of Transitions (Edges)
For edge evaluation purposes, the ST operation can be expanded to ST>
(positive edge, "P" coil) or ST< (negative edge, "N" coil).

Note: Each IL line with edge evaluation has its own old value!

The pulse is active for exactly one PCL cycle, i.e. the network
must be executed at least twice.

Online Changes and Edge Evaluation - IL
If, by online changing , LD, OR or AND and/or ST, STN operations are
converted to operations for detection of edge transitions, then this results
in the following transitions:

Rules for LD<, LD>, OR<, OR>, AND<, AND> by the example of LD>,
LD<:

• If an operation is converted into an operation with edge evaluation, it
assumes an old value which is initialized with FALSE. This value and
the current value of the variable form the basis of the behavior of the
operation.

• If an operation with "P" edge evaluation is converted into an operation
with "N" edge evaluation, the old value is initialized with FALSE. This
value and the current value of the variable form the basis of the
behavior of the operation. (This also applies to conversion of N into P!)

• If an operation with "P" edge evaluation is converted into another
operation with "P" edge evaluation (or N into N), the current old value
remains unchanged! This value and the current value of the variable
form the basis of the behavior of the operation.

• A new variable assumes a new old value initialized with FALSE. This
value and the current value of the variable form the basis of the
behavior of the variable.

• An inserted new IL line with operation for edge evaluation assumes an
old value initialized with FALSE. This value and the current value of
the variable form the basis of the behavior of the line.

Changing the operation and the value of the variable

New Same variable NEW variable

Old

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE FALSE FALSE FALSE FALSE 0-1-0 FALSE

FALSE 0-1-0 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

Fig. 6-21: Online change in case of LD operations

6-18 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Explanation by the example of the LD operation (OR, AND
analogously):

LD Load operation, state of the variable FALSE

Load operation, positive edge, state of the variable TRUE, etc. ..

Rules for ST operations (ST>, ST<):

• If an ST operation is converted into an ST operation with edge
evaluation, it assumes an old value which is initialized with FALSE.
This value and the current value of the variable form the basis of the
behavior of the operation.

• If an ST operation with "P" edge evaluation is converted into an ST
operation with "N" edge evaluation, the old value is initialized with
FALSE. This value and the current value of the variable form the basis
of the behavior of the operation. (This also applies to conversion of N
into P!)

• If an ST operation with "P" edge evaluation is converted into another
ST operation with "P" edge evaluation (or N into N), the current old
value remains unchanged! This value and the current value of the
variable form the basis of the behavior of the operation.

• A new variable assumes the old value of its predecessor. This
value and the current value of the variable form the basis of the
behavior of the variable.

• An inserted new coil for edge evaluation assumes an old value
initialized with FALSE. This value and the current value of the variable
form the basis of the behavior of the coil.

Changing the operation type and the value of the variable

New Same variable NEW variable

Old

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE FALSE

FALSE 0-1-0 0-1-0 FALSE FALSE 0-1-0 0-1-0 FALSE

Fig. 6-22: Online change in case of coils

Explanation:

ST operation, state of the variable FALSE

ST operation, positive edge, state of the variable TRUE, etc. ..

WinPCL 06VRS Instruction List Editor 6-19

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

6.7 Pop-up Menu, IL Editor <Shift>+<F10>

This pop-up menu contains the essential commands for this editor. It can
be opened by pressing the right mouse button or the <Shift>+<F10> keys.

Menu items Explanation

Open Branch, also <Ctrl>+<Enter>

New network - by adding an empty IL line before the current network
- by adding an empty LD network before the current network
- by adding an empty IL line behind the current network
- by adding an empty LD network before the current network

Delete network Deletion of the current network (see marginal marking).

Separate network Service command

Connect network Service command

Convert network to - a ladder diagram network
- convert the complete contents of the editor into ladder diagram networks with "LD (all)"
- convert the complete contents of the editor into IL networks with "IL (all)"

ProVi messages Display and modification of the diagnosis properties.

Import
implementation

The ASCII file selected from the "WinPCL text files" is added to the current IL line.

Export
implementation

The complete contents of the IL editor is exported as an ASCII file and stored in the folder
"WINPCL text files".

Export network The complete IL network is exported as an ASCII file and stored in the folder "WINPCL text
files" (marginal marking).

Syntax text List of all errors in the current editor. You can move to the place where the error occurred by
double-clicking the mouse or by pressing the <Ctrl>+<Enter> keys.

Error help The line, where the cursor is positioned, is tested for correct syntax. If an error is detected,
this error is explained, also possible with <Ctrl>+<F1>.

Declaration help Description of the interface of the data type or of the function block type of the current line.

Cross reference help List of all places where the variable is used.
The place of use can be reached by double-clicking the mouse or pressing the <Ctrl>+<Enter>
keys.

Force Allows the entry of a variable name. The value of the variables is indicated and
can be forced once. The window remains open and the process can be activated again.
Forcing takes place between the update of the input variable and the start of the program code
execution.

Status ARRAYs /
Structures

Display of the status of array and structure elements, forcing by pressing the <Shift>+<F10>
keys or the right mouse button.

Print current window Print of the editor contents with <Ctrl>+<P>)

Options Optimization of the column width

Internals Search for faults in the programming system, to be used only if approved by the service.

Fig. 6-23: Pop-up menu of the instruction list editor

6-20 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

6.8 Block Commands, IL Editor

Select the text by pressing and holding the SHIFT KEY while using the
appropriate arrow key or by pressing and holding the left mouse button
while dragging it across the text.

You can select IL for every network by clicking the gray bar on the left
outer side.

Extending the selection Key combination

One character to the right <Shift>+ arrow key <to the right>

One character to the left <Shift>+ arrow key <to the left>

To the end of the line <Shift>+<End>

To the beginning of the line <Shift>+<Home>

Down by one line <Shift>+ arrow key <downward>

Up by one line <Shift>+ arrow key <upward>

Down by one page <Shift>+<Page down>

Up by one page <Shift>+<Page up>

Deletion of text Keys

Deleting the character to the left of the
cursor

BACKSPACE KEY

Deleting the character to the right of
the cursor

Copying and moving of text Key combination

Copying the text selected to the
clipboard

<Ctrl>+<C>

Moving the text selected to the
clipboard

<Ctrl>+<X>

Pasting the contents from the
clipboard

<Ctrl>+<V>

WinPCL 06VRS Instruction List Editor 6-21

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

6.9 Search and Replace, IL Editor

is in the first version and provides the features of a text editor:

AWL_Suchen.bmp

Fig. 6-24: Search function in the IL editor

6.10 Cross Reference List, IL Editor

In contrast to the cross references of the pop-up menu, the overview
obtained via "View / Cross reference list" displays all variables. Of course,
only variables from lines with the correct syntax can be resolved by their
place of use. However, all faulty names or names with double declaration
are displayed and can, thus, be reached with by double-clicking the
mouse or pressing the <Ctrl>+<Enter> keys.

AWL_QVL.bmp

Fig. 6-25: Cross reference list with IL applications

6-22 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Pictogram Meaning

LD, LDN Read access, negated read access

CAL Block call

ST, STN Write access, negated write access

SET, RES- Set, reset, write access

6.11 Documentation, IL Editor

Documentation must be implemented by using the column widths
specified under Extras / Options, IL Editor / Print / IL.

print_awl.bmp

Fig. 6-26: Print options in Instruction list

The button "Apply" activates the column width set for the instruction list
editor. The width of the column can be entered either in the window
shown above or preset in the editor by dragging the headers.

The button "Standard" resets the default.

The "OK" button applies the setting and closes the dialog window.

The "Cancel" button closes the window; the previous values are kept.

Detailed information on the real print process and the features is to be
found in the main chapter on WinPCL.

WinPCL 06VRS Instruction List Editor 6-23

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

6.12 Instructions of the IL, Table Overview

The following instructions are supported in compliance with EN 61131-3:

• Loading and Storing Operations

• Set and Reset Commands (Bit Operands Only)

• Logic Instructions

• Jumps, Calls, Return (Conditional and Unconditional)

• Arithmetic Instructions and

• Comparators

Note: All instructions which are used for a linking of data only apply to
operands with same data types!

Loading, storing,
setting and resetting
instructions

Logic instructions Jumps, calls, return
(conditional and
unconditional)

Comparison
instructions

Arithmetic
instructions

LD SET AND AND(JMP CAL EQ EQ(ADD ADD(

LDN SETC ANDN ANDN(JMPC CALC EQN EQN(SUB SUB(

ST SETCN OR OR(JMPCN CALCN NE(MUL MUL(

STN RES ORN ORN(RET NEN NEN(DIV DIV(

RESC XOR XOR(RETC GT GT(MOD MOD(

RESCN XORN XORN(RETCN GE GE(

LT LT(

LE LE(

6-24 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

6.13 Instructions and Approved Data Types

Note: 64 Bit data types are only supported by PPC and Soft Controls
(LWORD, LINT, ULINT, LREAL).

Loading and Storing Operations
The following operations are supported

• LD with extension to the LD> and LD< edge evaluation, LDN

• ST with extension to the ST> and ST< edge evaluation, STN

LD
(Loading and Storing Operations), (Instructions of the IL, Table
Overview)

Operation Activity Approved for data type

LD Loads the value of the operand. All, pointer, P# (address of)

LD> Transfer of the 0-1 edge of the operand as pulse BOOL

LD< Transfer of the 1-0 edge of the operand as pulse BOOL

LDN
(Loading and Storing Operations), (Instructions of the IL, Table Overview)

Operation Activity Approved for data type

LDN Loads the bitwise negated value of the operand. BOOL; BYTE; WORD; DWORD, LWORD

ST
 (Loading and Storing Operations), (Instructions of the IL, Table
Overview)

Operation Activity Approved for data type

ST Stores the current value to the operand. All, pointer

ST> Transfer of the 0-1 edge as pulse BOOL

ST< Transfer of the 1-0 edge as pulse BOOL

STN
(Loading and Storing Operations), (Instructions of the IL, Table Overview)

Operation Activity Approved for data type

STN Stores the bitwise negated value to the operand. BOOL; BYTE; WORD; DWORD, LWORD

WinPCL 06VRS Instruction List Editor 6-25

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Set and Reset Commands (Bit Operands Only)
The following operations are supported:

• SET, SETC, SETCN

• RES, RESC, RESCN.

SET
(Set and Reset Commands (Bit Operands Only)), (Instructions of the IL,
Table Overview)

Operation Activity

SET Unconditional setting of the bit operand.

SETC
(Set and Reset Commands (Bit Operands Only)), (Instructions of the IL,
Table Overview)

Operation Activity

SETC Setting of the bit operand if the previous result is TRUE, otherwise no activity.

SETCN
(Set and Reset Commands (Bit Operands Only)), (Instructions of the IL,
Table Overview)

Operation Activity

SETCN Sets the bit operand if the previous result is FALSE, else no activity.

RES
(Set and Reset Commands (Bit Operands Only)), (Instructions of the IL,
Table Overview)

Operation Activity

RES Unconditional resetting of the bit operand.

RESC
(Set and Reset Commands (Bit Operands Only)), (Instructions of the IL,
Table Overview)

Operation Activity

RESC Resets the bit operand if the previous result is TRUE, else no activity.

RESCN
(Set and Reset Commands (Bit Operands Only)), (Instructions of the IL,
Table Overview)

Operation Activity

RESCN Resets the bit operand if the previous result is FALSE, else no activity.

6-26 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Logic Instructions
The following logic operations are supported

• AND, bit-by-bit AND operation, with extension to the AND> and AND<
edge evaluation

• OR, bit-by-bit OR operation, with extension to the OR> and OR< edge
evaluation

• XOR, bit-by-bit XOR operation

AND
The AND operation (Logic Instructions, Instructions of the IL, Table
Overview) is carried out bit by bit.
If the AND operation is applied to BYTE, WORD, DWORD, bit positions
of the same order are linked.

Operation Activity

AND AND operation of the current value with the value of the operand

AND> AND operation of the current value with a pulse, with a 0-1 transition of the value of the operand (for
Boolean variables only)

AND< AND operation of the current value with a pulse, with a 1-0 transition of the value of the operand (for
Boolean variables only)

ANDN AND operation of the current value with the bitwise negated value of the operand

AND(AND operation of the current value with the value of the following expression

ANDN(AND operation of the current value with the bitwise negated value of the following expression

) Termination of an expression

AND operation Representation in the instruction list

LD Input_1
AND Input_2
ST Output_1

 AND for Boolean variable (in LD shown as contact)

Input_1
Input_2

Output_1

1 0 1 0
1 1 0 0

1 0 0 0

AND for BYTE- variable

Input_1
Input_2

Output_1

10100101 16#A5
11000101 16#C5
--------------- --------
10000101 16#85

AND for WORD variable

Input_1
Input_2

Output_1

16#A5F0
16#C5C3

16#85C0

AND for DWORD variable

Input_1
Input_2

Output_1

16#A5F0A5F0
16#C5C3C5C3

16#85C085C0

WinPCL 06VRS Instruction List Editor 6-27

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

AND for LWORD variable

Input_1
Input_2

Output_1

16#A5F0 A5F0 A5F0 A5F0
16#C5C3 C5C3 C5C3 C5C3

16#85C0 85C0 85C0 85C0

OR
The OR operation (Logic Instructions, Instructions of the IL, Table
Overview) is carried out bit by bit.
If the OR operation is applied to BYTE, WORD, DWORD, bit positions of
the same order are linked.

Operation Activity

OR OR operation of the current value with the value of the operand

OR> OR operation of the current value with a pulse, with a 0-1 transition of the value of the operand (for
Boolean variables only)

OR< OR operation of the current value with a pulse, with a 1-0 transition of the value of the operand (for
Boolean variables only))

ORN OR operation of the current value with the bit-serial negated value of the operand

OR(OR operation of the current value with the value of the following expression

ORN(OR operation of the current value with the bit-serial negated value of the following expression

) Termination of an expression

OR operation Representation in the instruction list

LD Input_1
OR Input_2
ST Output_1

OR for Boolean variable (in LD shown as contact)

Input_1
Input_2

Output_1

1 0 1 0
1 1 0 0

1 1 1 0

OR for BYTE- variable

Input_1
Input_2

Output_1

10100101 16#A5
11000101 16#C5
--------------- --------
11100101 16#E5

OR for WORD- variable

Input_1
Input_2

Output_1

16#A5F0
16#C5C3

16#E5F3

OR for DWORD- variable

Input_1
Input_2

Output_1

16#A5F0A5F0
16#C5C3C5C3

16#E5F3E5F3

6-28 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

OR for LWORD- variable

Input_1
Input_2

Output_1

16#A5F0 A5F0 A5F0 A5F0
16#C5C3 C5C3 C5C3 C5C3

16#E5F3 E5F3 E5F3 E5F3

XOR
The XOR operation (Logic Instructions, Instructions of the IL, Table
Overview) is carried out bit by bit.
If the XOR operation is applied to BYTE, WORD, DWORD, bit positions
of the same order are linked.

Operation Activity

XOR XOR operation of the current value with the value of the operand

XORN XOR operation of the current value with the bitwise negated value of the operand

XOR(XOR operation of the current value with the value of the following expression

XORN(XOR operation of the current value with the bitwise negated value of the following expression

) Termination of an expression

XOR operation Representation in the instruction list

LD Input_1
XOR Input_2
ST Output_1

XOR for Boolean variable

Input_1
Input_2

Output_1

1 0 1 0
1 1 0 0

0 1 1 0

XOR for BYTE variable

Input_1
Input_2

Output_1

10100101 16#A5
11000101 16#C5
--------------- --------
01100000 16#60

XOR for WORD variable

Input_1
Input_2

Output_1

16#A5F0
16#C5C3

16#6033

XOR for DWORD variable

Input_1
Input_2

Output_1

16#A5F0A5F0
16#C5C3C5C3

16#6033 6033

XOR for LWORD variable

Input_1
Input_2

Output_1

16#A5F0 A5F0 A5F0 A5F0
16#C5C3 C5C3 C5C3 C5C3

16#6033 6033 6033 6033

WinPCL 06VRS Instruction List Editor 6-29

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Jumps, Calls, Return (Conditional and Unconditional)
The programming system supports:

• The unconditional jump: JMP label

• Conditional jumps: JMPC label and JMPCN label (see JMP)

• The unconditional function block call CAL FBinstance

• The conditional function block calls CALC FBinstance and
CALCN FBinstance (see CAL).

• The unconditional return from programs, function blocks and functions
(see RET)

• The conditional return from programs, function blocks and functions
RETC and RETCN RET)

(Instructions of the IL, Table Overview)

JMP
Jumps are elementary instructions for branching to the instruction list.
They always lead to a jump destination, a label. With regard to the
transition between instruction list, ladder diagram and function block
language, a label can be only at the beginning of a network, before an LD
or LDN instruction.

Jumps can be ‘conditional’ or ‘unconditional’.

(Instructions of the IL, Table Overview, Jumps, Calls, Return (Conditional
and Unconditional))

Operation Activity

JMP mLabel Unconditional jump to the ‘mLabel’ label.

JMPC mLabel Jump to the ‘mLabel’ label, if the current value is TRUE.

JMPCN mLabel Jump to the ‘mLabel’ label, if the current value is FALSE.

Note: Jumps used in an instruction list must not result in endless
loops!

The cancel condition for upward jumps has to be checked!

CAL
A CAL instruction allows a function block type assignment which was
declared before to be called up within an instruction list.

The call can be ‘conditional’ or ‘unconditional’.

(Instructions of the IL, Table Overview, Jumps, Calls, Return (Conditional
and Unconditional))

Operation Activity

CAL fb1 Unconditional call of the assignment ‘fb1’ of the function block of type xx.

CALC fb1 Call of the assignment ‘fb1’ of the function block of type xx, if the current value is TRUE.

CALCN fb1 Call of the assignment ‘fb1’ of the function block of type xx, if the current value is FALSE.

6-30 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Example Call

Declaration part of the program or the function block intended to use the
RS flipflop ff75.

dekl UP Rufe.bmp

Fig. 6-27: Call types of function blocks in the declaration part

Unconditional call of a function block with ‘CAL’

Impl UP Rufe1.bmp

Fig. 6-28: Unconditional call of a function block in LD and IL

The required inputs were loaded before the call CAL ff75 (IL). A more
complicated instruction list can be placed instead of the LD.

The executed outputs are available for retrieval after the call. If outputs of
the ff75 are read already before being called, the user gets the old
calculated value, possibly the initial value, if the block was not edited
before.
If the call of ff75 is made conditional on a condition (ENABLE variable in
the example), there are two possibilities:

WinPCL 06VRS Instruction List Editor 6-31

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Conditional call of a function block with ‘CALC / CALCN’

Impl UP Rufe2.bmp

Fig. 6-29: Conditional call of a function block with "CALC / CALCN"

In the figure shown above the inputs are loaded, irrespective of whether
the FB is called or not. The call takes place in dependence on the
condition that stands before CALC / CALCN.
The entered IL cannot be represented graphically in the ladder diagram.
The second way of a conditional call is shown in the following figure.
Loading of the inputs, the call and the supply of the outputs is skipped
depending on the ENABLE requirement. The entered instruction list can
be shown graphically in the LD.

Conditional call of a function block by skipping

Impl UP Rufe3.bmp

Fig. 6-30: Conditional call of a function block by skipping

6-32 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

RET
The execution of programs, function blocks or functions normally ends with
the last instruction list line of its implementation without requiring a RET
command.

However, the user can define in the IL another return destination,
conditional or unconditional, with the following commands.

(Instructions of the IL, Table Overview, Jumps, Calls, Return (Conditional
and Unconditional))

Note: A return command within an action block terminates the
execution of the complete program organization unit (program
or function block).

Operation Activity

RET Unconditional return from a program, function block or a function.

RETC Conditional return from a program, function block or a function if the current value is TRUE.

RETCN Conditional return from a program, function block or a function, if the current value is FALSE.

Arithmetic Instructions
Arithmetic instructions serve for linking numbers of the same type.

(Instructions of the IL, Table Overview)

Operation Activity Approved for data type

ADD Value of an operand added to the current value. All numbers, TIME,
attaching of CHAR and
STRING

ADD(Value of the following expression added to the current value All numbers, TIME

SUB Value of an operand subtracted from the current value. All numbers, TIME

SUB(Value of the following expression subtracted from the current value All numbers

MUL Value of an operand multiplied by the current value. All numbers

MUL(Value of the following expression multiplied by the current value All numbers

DIV Current value divided by the value of the operand. All numbers

DIV(Current value divided by the value of the following expression All numbers

MOD Modulo division of the current value by the value of the operand. All numbers except REAL

MOD(Modulo division of the current value by the value of the following
expression.

All numbers except REAL

) Termination of the current expression.

WinPCL 06VRS Instruction List Editor 6-33

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ADD
The arithmetic instruction Addition - ADD allows numbers of the same
type to be added. The result is of the summand type.

(Instructions of the IL, Table Overview, Arithmetic Instructions)

ADD - Addition Representation in the instruction list

LD Input_1
ADD Input_2
ST Output_1

Example of the results (data types: SINT / INT / DINT / LINT)

Input_1 Input_2 Output_1 Error

Sum less than pmin Not calculated S#ErrorFlg: 1
S#ErrorNr: 3

-35 -7 -42 S#ErrorFlg: 0

+35 -7 28 S#ErrorFlg: 0

Sum greater than pmax Not calculated S#ErrorFlg: 1
S#ErrorNr: 2

Limits and S#ErrorTyp differ for SINT / INT / DINT / LINT:

Type pmax Pmin S#ErrorTyp

SINT 127 -128 -10004

INT 32767 -32768 -10005

DINT 2147483647 -2147483648 -10006

LINT 9223372036854775807 -9223372036854775808 -10007

Example of the results (data types: USINT / UINT / UDINT / ULINT)

Input_1 Input_2 Output_1 Error

35 7 42 S#ErrorFlg: 0

Sum greater than pmax Not calculated S#ErrorFlg: 1
S#ErrorNr: 2

Limits and S#ErrorTyp differ for USINT / UINT / UDINT / LINT:

Type pmax S#ErrorTyp

USINT 255 -10000

UINT 65535 -10001

UDINT 4294967295 -10002

ULINT 18446744073709551615 -10003

The addition of REAL numbers occurs analogous to the ANY-INT
numbers.

Overflow or other errors are indicated with S#ErrorFlg, S#ErrorTyp and
S#ErrorNr as described in the help index "Errors with REAL Operations in
Borderline Cases".

Addition of REAL or LREAL
numbers

6-34 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

If the time basis is 2 ms the physical limit for data type TIME corresponds
to 99d10h5m34s590ms. Presently, this value is also indicated, if the
variable of data type TIME contains the bit pattern 16#FFFFFFFF.
Presently, the input is limited on 23d23h59m59s999ms.

If the limit is exceeded, you will receive:

S#ErrorFlg = TRUE, S#ErrorTyp = -10080 and S#ErrorNr = 2.

SUB
The arithmetic instruction Subtraction - SUB allows numbers of the same
type to be subtracted. The result is of the input variable type.

(Instructions of the IL, Table Overview, Arithmetic Instructions)

SUB - Subtraction Representation in the instruction list

LD Input_1
SUB Input_2
ST Output_1

Example of the results (data types: SINT / INT / DINT / LINT)

Input_1 Input_2 Output_1 Error

Difference less than pmin Not calculated S#ErrorFlg: 1
S#ErrorNr: 3

-35 +7 -42 S#ErrorFlg: 0

+35 -7 +42 S#ErrorFlg: 0

Difference greater than
pmax

Not calculated S#ErrorFlg: 1
S#ErrorNr: 2

Limits and S#ErrorTyp differ for SINT / INT / DINT / LINT:

Type pmax pmin S#ErrorTyp

SINT 127 -128 -10014

INT 32767 -32768 -10015

DINT 2147483647 -2147483648 -10016

LINT 9223372036854775807 -9223372036854775808 -10017

Example of the results (data types: USINT / UINT / UDINT / ULINT)

Input_1 Input_2 Output_1 Error

35 7 28 S#ErrorFlg: 0

Difference less than 0 Not calculated S#ErrorFlg: 1
S#ErrorNr: 3

Limits and S#ErrorTyp differ for USINT / UINT / UDINT / ULINT:

Type S#ErrorTyp

USINT -10010

UINT -10011

UDINT -10012

ULINT -10013

Addition of variables / constants
of type TIME

WinPCL 06VRS Instruction List Editor 6-35

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The subtraction of REAL numbers occurs analogous to the ANY-INT
numbers.

Overflow or other errors are indicated with S#ErrorFlg, S#ErrorTyp and
S#ErrorNr as described in the help index "Errors with REAL Operations in
Borderline Cases".

If the limit falls below 0 ms, you will receive:

S#ErrorFlg= TRUE, S#ErrorTyp= -10081 and S#ErrorNr= 3.

MUL
The arithmetic instruction Multiplication - MUL allows numbers of the
same type to be multiplied. The result is of the factor type.

(Instructions of the IL, Table Overview, Arithmetic Instructions)

MUL - Multiplication Representation in the instruction list

LD Input_1
MUL Input_2
ST Output_1

Example of the results (data types: SINT / INT / DINT / LINT)

Input_1 Input_2 Output_1 Error

Product less than pmin Not calculated S#ErrorFlg: 1
S#ErrorNr: 3

-5 +7 -35 S#ErrorFlg: 0

+5 -7 -35 S#ErrorFlg: 0

-5 -7 35 S#ErrorFlg: 0

+5 +7 35 S#ErrorFlg: 0

Product greater than
pmax

Not calculated S#ErrorFlg: 1
S#ErrorNr: 2

Limits and S#ErrorTyp differ for SINT / INT / DINT / LINT:

Type Pmax Pmin S#ErrorTyp

SINT 127 -128 -10024

INT 32767 -32768 -10025

DINT 2147483647 -2147483648 -10026

LINT 9223372036854775807 -9223372036854775808 -10027

Example of the results (data types: USINT / UINT / UDINT / ULINT)

Input_1 Input_2 Output_1 Error

5 7 35 S#ErrorFlg: 0

Product greater than
pmax

Not calculated S#ErrorFlg: 1
S#ErrorNr: 2

Subtraction of
REAL or LREAL numbers

Subtraction of variables /
constants of type TIME

6-36 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Limits and S#ErrorTyp differ for USINT / UINT / UDINT / ULINT:

Type pmax S#ErrorTyp

USINT 255 -10020

UINT 65535 -10021

UDINT 4294967295 -10022

ULINT 18446744073709551615 -10023

The multiplication of REAL numbers occurs analogous to the ANY-INT
numbers.

Overflow or other errors are indicated with S#ErrorFlg, S#ErrorTyp and
S#ErrorNr as described in the help index "Errors with REAL Operations in
Borderline Cases".

DIV
The arithmetic instruction Division - DIV allows numbers of the same type
to be divided. The result is the integer component and is of the input
variable type.

(Instructions of the IL, Table Overview, Arithmetic Instructions)

Note: An assignment of the division with standard-initialized variables
causes an error (division by zero)!

DIV - Division Representation in the instruction list

LD Input_1
DIV Input_2
ST Output_1

Input_1 Input_2 Output_1 Error

-35 +6 -5 S#ErrorFlg: 0

+35 -6 -5 S#ErrorFlg: 0

-6 +35 0 S#ErrorFlg: 0

-6 -35 0 S#ErrorFlg: 0

Division by 0 Not calculated S#ErrorFlg: 1
S#ErrorNr: 5

 S#ErrorTyp differs for the data types SINT / INT / DINT / LINT:

Type S#ErrorTyp

SINT -10034

INT -10035

DINT -10036

LINT -10037

Multiplication of
REAL or LREAL numbers

WinPCL 06VRS Instruction List Editor 6-37

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Example of the results (data types: USINT / UINT / UDINT / ULINT)

Input_1 Input_2 Output_1 Error

35 6 5 S#ErrorFlg: 0

6 35 0 S#ErrorFlg: 0

Division by 0 Not calculated S#ErrorFlg: 1
S#ErrorNr: 5

S#ErrorTyp differs for the data types USINT / UINT / UDINT / ULINT:

Type S#ErrorTyp

USINT -10030

UINT -10031

UDINT -10032

ULINT -10033

The division of REAL numbers occurs analogous to the ANY-INT
numbers.

Overflow or other errors are indicated with S#ErrorFlg, S#ErrorTyp and
S#ErrorNr as described in the help index "Errors with REAL Operations in
Borderline Cases".

MOD
The arithmetic instruction Modulo division - MOD allows the modulo
division of two numbers with same type (modulo of the division DIV).

The result is of the input variable type.

(Not defined for REAL!)

(Instructions of the IL, Table Overview, Arithmetic Instructions)

Note: An assignment of the MOD division with standard-initialized
variables causes an error (division by zero)!

MOD - Modulo division Representation in the instruction list

LD Input_1
MOD Input_2
ST Output_1

Input_1 Input_2 Output_1 Error

-35 +6 -5 S#ErrorFlg: 0

+35 -6 5 S#ErrorFlg: 0

-6 +35 -6 S#ErrorFlg: 0

-6 -35 -6 S#ErrorFlg: 0

MOD division by 0 Not calculated S#ErrorFlg: 1
S#ErrorNr: 5

Division of
REAL or LREAL numbers

6-38 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

S#ErrorTyp differs for the data types SINT / INT / DINT / LINT:

Type S#ErrorTyp

SINT -10044

INT -10045

DINT -10046

LINT -10047

Example of the results (data types: USINT / UINT / UDINT /ULINT)

Input_1 Input_2 Output_1 Error

35 6 5 S#ErrorFlg: 0

6 35 0 S#ErrorFlg: 0

MOD division by 0 Not calculated S#ErrorFlg: 1
S#ErrorNr: 5

S#ErrorTyp differs for the data types USINT / UINT / UDINT / ULINT:

Type S#ErrorTyp

USINT -10040

UINT -10041

UDINT -10042

ULINT -10043

Comparators
Comparators are instructions for comparing operands and expressions
with the current value:

• of numbers of the same type with regard to their size,

• of bit strings of the same type with regard to equality / inequality,

• of two characters (CHAR) or strings (STRING) with regard to their
alphabetic order or

• of two time values (TIME) with regard to their size.

The result is a Boolean value.

The error variables S#ErrorFlg, S#ErrorNr, S#ErrorTyp are not affected, as
no error may occur.

(Instructions of the IL, Table Overview)

Operation Result

GT
GT(
GE
GE(
EQ
EQ(

NE(
LT
LT(
LE
LE(
)

Current value greater than operand:
Current value greater than expression:
Current value greater than or equal to
operand:
Current value greater than or equal to
expression:
Current value equal to operand:
Current value equal to expression:
Current value not equal to operand:
Current value not equal to expression:
Current value less than operand:
Current value less than expression:
Current value less than or equal to operand:
Current value less than or equal to
expression:
Termination of an expression

Current value:
Current value:
Current value:
Current value:
Current value:
Current value:
Current value:
Current value:
Current value:
Current value:
Current value:
Current value:

=
=
=
=
=
=
=
=
=
=
=
=

TRUE, else FALSE
TRUE, else FALSE
TRUE, else FALSE
TRUE, else FALSE
TRUE, else FALSE
TRUE, else FALSE
TRUE, else FALSE
TRUE, else FALSE
TRUE, else FALSE
TRUE, else FALSE
TRUE, else FALSE
TRUE, else FALSE

WinPCL 06VRS Instruction List Editor 6-39

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

GT
The comparator Greater than - GT supplies 1 at the Boolean output if the
variable / constant at the upper input (current value) is greater than the
variable / constant at the lower input. Else, 0 is applied at the output.

(Instructions of the IL, Table Overview, Comparators)

Greater than Representation in the instruction list

LD Input_1
GT Input_2
ST Output_1

Comparison of numbers (USINT, UINT, UDINT, ULINT, SINT, INT,
DINT, LINT, REAL, LREAL)

Input_1: ANYNUM Input_2: ANYNUM Output_1: BOOL

5 3 1

5 5 0

3 5 0

Comparison of characters (alphabetic order)

Input_1: CHAR Input_2: CHAR Output_1: BOOL

’A‘ ’B‘ 0

’A‘ ’a‘ 0

’5‘ ’3‘ 1

’5‘ ’5‘ 0

Comparison of character strings (alphabetic order)

Input_1: STRING Input_2: STRING Output_1: BOOL

’ABC‘ ’aBC‘ 0

’ABC‘ ’‘ 1

’ABC‘ ’AB‘ 1

’ABC‘ ’ABC‘ 0

Comparison of times

Input_1: TIME Input_2: TIME Output_1: BOOL

7��PV 7��PV 0

7��PV 7��PV 0

7��PV 7��PV 1

6-40 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

GE
The comparator Greater than or equal to - GT supplies 1 at the Boolean
output if the variable / constant at the upper input (current value) is
greater than or equal to the variable / constant at the lower input. Else, 0
is applied at the output.

(Instructions of the IL, Table Overview, Comparators)

Greater than or equal to Representation in the instruction list

LD Input_1
GE Input_2
ST Output_1

Comparison of numbers (USINT, UINT, UDINT, ULINT, SINT, INT,
DINT, LINT, REAL, LREAL)

Input_1: ANYNUM Input_2: ANYNUM Output_1: BOOL

5 3 1

5 5 1

3 5 0

Comparison of characters (alphabetic order)

Input_1: CHAR Input_2: CHAR Output_1: BOOL

’A‘ ’B‘ 0

’A‘ ’a‘ 0

’5‘ ’3‘ 1

’5‘ ’5‘ 1

Comparison of character strings (alphabetic order)

Input_1: STRING Input_2: STRING Output_1: BOOL

’ABC‘ ’aBC‘ 0

’ABC‘ ’‘ 1

’ABC‘ ’AB‘ 1

’ABC‘ ’ABC‘ 1

Comparison of times

Input_1: TIME Input_2: TIME Output_1: BOOL

T#2ms T#3ms 0

T#2ms T#2ms 1

T#3ms T#2ms 1

WinPCL 06VRS Instruction List Editor 6-41

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

EQ
The comparator Equal to - EQ supplies 1 at the Boolean output if the
variable / constant at the upper input (current value) is equal to the
variable / constant at the lower input. Else, 0 is applied at the output.

(Instructions of the IL, Table Overview, Comparators)

Note: This comparison is also available for Boolean variables,
BYTE, WORD, DWORD and LWORD!

Equal to Representation in the instruction list

LD Input_1
EQ Input_2
ST Output_1

Comparison of numbers (USINT, UINT, UDINT, ULINT, SINT, INT,
DINT, LINT, REAL, LREAL)

Input_1: ANYNUM Input_2: ANYNUM Output_1: BOOL

5 3 0

5 5 1

3 5 0

Note: Avoid comparisons of real numbers with number "0" since it is
ambiguous!

Comparison of characters (alphabetic order)

Input_1: CHAR Input_2: CHAR Output_1: BOOL

’A‘ ’B‘ 0

’A‘ ’a‘ 0

’5‘ ’3‘ 0

’5‘ ’5‘ 1

Comparison of character strings (alphabetic order)

Input_1: STRING Input_2: STRING Output_1: BOOL

’ABC‘ ’aBC‘ 0

’ABC‘ ’‘ 0

’ABC‘ ’AB‘ 0

’ABC‘ ’ABC‘ 1

6-42 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Comparison of times

Input_1: TIME Input_2: TIME Output_1: BOOL

T#2ms T#3ms 0

T#2ms T#2ms 1

T#3ms T#2ms 0

Bit comparison

Input_1: BOOL Input_2: BOOL Output_1: BOOL

1 0 0

1 1 1

0 1 0

0 0 1

Comparison of bit strings (BYTE, WORD, DWORD, LWORD)

Input_1: BYTE Input_2: BYTE Output_1: BOOL

16#00 16#01 0

16#01 16#01 1

16#02 16#01 0

NE
The comparator Not equal to - NE supplies 1 at the Boolean output if the
variable / constant at the upper input (current value) is equal to the
variable / constant at the lower input. Else, 0 is applied at the output.

(Instructions of the IL, Table Overview, Comparators)

Note: This comparison is also available for Boolean variables,
BYTE, WORD, DWORD and LWORD!

Not equal to Representation in the instruction list

LD Input_1
NE Input_2
ST Output_1

Comparison of numbers (USINT, UINT, UDINT, ULINT, SINT, INT,
DINT, LINT, REAL, LREAL)

Input_1: ANYNUM Input_2: ANYNUM Output_1: BOOL

5 3 1

5 5 0

3 5 1

Note: Avoid comparisons of real numbers with number "0" since it is
ambiguous!

WinPCL 06VRS Instruction List Editor 6-43

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Comparison of characters (alphabetic order)

Input_1: CHAR Input_2: CHAR Output_1: BOOL

’A‘ ’B‘ 1

’A‘ ’a‘ 1

’5‘ ’3‘ 1

’5‘ ’5‘ 0

Comparison of character strings (alphabetic order)

Input_1: STRING Input_2: STRING Output_1: BOOL

’ABC‘ ’aBC‘ 1

’ABC‘ ’‘ 1

’ABC‘ ’AB‘ 1

’ABC‘ ’ABC‘ 0

Comparison of times

Input_1: TIME Input_2: TIME Output_1: BOOL

T#2ms T#3ms 1

T#2ms T#2ms 0

T#3ms T#2ms 1

Bit comparison

Input_1: BOOL Input_2: BOOL Output_1: BOOL

1 0 1

1 1 0

0 1 1

0 0 0

Comparison of bit strings (BYTE, WORD, DWORD, LWORD)

Input_1: BYTE Input_2: BYTE Output_1: BOOL

16#00 16#01 1

16#01 16#01 0

16#02 16#01 1

6-44 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

LE
The comparator Less than or equal to - LE supplies 1 at the Boolean
output if the variable / constant at the upper input (current value) is less
than or equal to the variable / constant at the lower input. Else, 0 is
applied at the output.

(Instructions of the IL, Table Overview, Comparators)

Less than or equal to Representation in the instruction list

LD Input_1
LE Input_2
ST Output_1

Comparison of numbers (USINT, UINT, UDINT, ULINT, SINT, INT,
DINT, LINT, REAL, LREAL)

Input_1: ANYNUM Input_2: ANYNUM Output_1: BOOL

5 3 0

5 5 1

3 5 1

Comparison of characters (alphabetic order)

Input_1: CHAR Input_2: CHAR Output_1: BOOL

’A‘ ’B‘ 1

’A‘ ’a‘ 1

’5‘ ’3‘ 0

’5‘ ’5‘ 1

Comparison of character strings (alphabetic order)

Input_1: STRING Input_2: STRING Output_1: BOOL

’ABC‘ ’aBC‘ 1

’ABC‘ ’‘ 0

’ABC‘ ’AB‘ 0

’ABC‘ ’ABC‘ 1

Comparison of times

Input_1: TIME Input_2: TIME Output_1: BOOL

7��PV 7��PV 1

7��PV 7��PV 1

7��PV 7��PV 0

WinPCL 06VRS Instruction List Editor 6-45

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

LT
The comparator Less than - LT supplies 1 at the Boolean output if the
variable / constant at the upper input (current value) is less than the
variable / constant at the lower input. Else, 0 is applied at the output.

(Instructions of the IL, Table Overview, Comparators)

Less than Representation in the instruction list

LD Input_1
LT Input_2
ST Output_1

Comparison of numbers (USINT, UINT, UDINT, ULINT, SINT, INT,
DINT, LINT, REAL, LREAL)

Input_1: ANYNUM Input_2: ANYNUM Output_1: BOOL

5 3 O

5 5 0

3 5 1

Comparison of characters (alphabetic order)

Input_1: CHAR Input_2: CHAR Output_1: BOOL

’A‘ ’B‘ 1

’A‘ ’a‘ 1

’5‘ ’3‘ 0

’5‘ ’5‘ 0

Comparison of character strings (alphabetic order)

Input_1: STRING Input_2: STRING Output_1: BOOL

’ABC‘ ’aBC‘ 1

’ABC‘ ’‘ 0

’ABC‘ ’AB‘ 0

’ABC‘ ’ABC‘ 0

Comparison of times

Input_1: TIME Input_2: TIME Output_1: BOOL

7��PV 7��PV 1

7��PV 7��PV 0

7��PV 7��PV 0

6-46 Instruction List Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL 06VRS Ladder Diagram Editor 7-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

7 Ladder Diagram Editor

7.1 General Notes on the Ladder Diagram Editor

The ladder diagram editor serves for entering and modifying the program
code in programs, function blocks and functions in the Edit and Online-
Edit modes, as well as for indicating variable values at the end of a PLC
cycle in the Status mode and for unchanged networks in the Online-Edit
mode.

It allows ladder diagram symbols to be used in compliance with EN
61131-3 and indicates the text language "Instruction list" in graphic form.
Most of the instruction list constructs can be converted into ladder
diagram networks and vice versa with the <TAB> key.

7.2 Structure of a Ladder Diagram

The network is the smallest independent unit in the ladder diagram. It can
consist of ladder diagram elements, such as relays, normally open
contacts and normally closed contacts. Moreover, it can contain set and
reset instructions and jumps.

A network can include temporary flags, functions and/or function blocks.

A network can further consist of a single-line or multi-line comment.

KOP_Netzwerk BSP_KOP.bmp

Fig. 7-1: Ladder diagram network with comment and label

Each network is limited by power rails to the right and left.

Horizontal connection lines

transfer the status from the immediately left to the immediately right
neighboring element.

Vertical connection lines

can be reached by one or several connection lines coming from the left or
from the right. A vertical connection line is logic "1" if one of the lines
coming from the left is "1". The vertical line is "0" if all lines coming from
the left are "0".

7-2 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• Off: all lines coming from the left are "off".

• On: at least one line coming from the left is "on".

The status of the vertical line is passed on to the right.

Each network can be provided with a (network) label . This label has to
start with a letter and ends with a ’:’ to the right.

Note: Bridge contacts cannot be realized!

7.3 Editing Ladder Diagrams

The starting point is an empty network. It is created by pressing the
<ENTER> key:

• Placing the new network in front: <Enter> on left upper corner of the
current network.

• Placing the new network behind: <Enter> on any other position in the
network.

The footer with the active commands is indicated if you position the cursor
on the grid position next to the left power rail. This footer is updated
according to the position

KOP_Fusszeile leeres Netzwerk.bmp

Fig. 7-2: Footer command in an empty network

Number Pictogram Commands

1 -| |- Insert a normally open contact (1)

2 -|/|- Insert a normally closed contact (1)

3 := Assignment in case of non-Boolean variables (1)

4 SFC Call of an SFC

5 FB Insert a function block instance , selection window (1)

6 FN Insert a function, selection window (1)

7 OP Insert an operation, selection window (1)

8 -(())- Footer with additional terminating elements

9 (* Edit a comment

0 ->> (o) Jump destination, insert / edit label

 (1) In the enter mode, the graphic element selected is inserted to the right of the current
position; in the overwrite mode, the current graphic element is replaced by the selected
one.

The footer commands can be used to open branches to the networks and
to close them at the required positions.

Number Pictogram Commands

3 Open a branch

3 Close a branch

WinPCL 06VRS Ladder Diagram Editor 7-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Since more than 10 commands are available for individual positions in the
ladder diagram, the following commands can be used to switch the footer:

Number Pictogram Command

8 -(())- Footer with additional terminating elements

8 -|| ||- Footer with additional contacts

KOP_Fusszeile zusätzliche Spulen.bmp

Fig. 7-3: Footer commands "additional terminating elements"

Number Pictogram Command

1 -()- Insert a coil (1)

2 -(P)- Insert a coil which reacts to the positive edge (1)

3 -(N)- Insert a coil which reacts to the negative edge (1)

4 NOT Negates the current element (normally open contact
ÄÅ normally closed contact)

5 -(S)- Set variable in case of a 0->1 transition (1)

6 -(R)- Reset variable in case of a 0->1 transition (1)

7 ->> (Conditional) jump (1)

8 <RET> (Conditional) return jump from PR / FB or FN

9 <- Place before (2)

0 Edit Edit the current variable name

(1) In the enter mode, the graphic element selected is inserted to the right of the current
position; in the overwrite mode, the current graphic element is replaced by the selected
one.

(2) The graphic element to be selected is inserted before the current position.

KOP_Fusszeile zusätzliche Kontakte.bmp

Fig. 7-4: Footer with additional contacts

Number Pictogram Command

1 -| |- Insert a normally open contact (1)

2 -|/|- Insert a normally closed contact (1)

3 -()- Insert a temporary flag (coil) (1)

4 NOT Negates the current element (normally open contact <-
> normally closed contact)

5 -|P|- Positive transition-sensing contact (positive edge) (0-
>1 transition) (1)

6 -|N|- Negative transition-sensing contact (negative edge) (1-
>0 transition) (1)

(1) In the enter mode, the graphic element selected is inserted to the right of the current
position; in the overwrite mode, the current graphic element is replaced by the selected
one.

7-4 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Operators
The footer command "7-OP" opens the selection window for operators.
They can be represented as list (space saving) or with detail information.

Furthermore, subsets can be selected:

• All operators

• Logic operators

• Boolean operators

• Arithmetic operators

• Comparison operators

• Jumps

OP_Auswahl.bmp

Fig. 7-5: Selection window, operators

The name of the desired operator can be entered in the input field. While
entering letter by letter of the name the cursor in the selection window
jumps to the respective item with the corresponding initial letters.

Within rungs the window can be restricted to operators with suitable
syntax.

WinPCL 06VRS Ladder Diagram Editor 7-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Functions
The footer command "6-FN" opens the selection window for functions.
They can be represented as list (space saving) or with detail information.

If the option "Preview" is selected, a graphic representation of the function
(interface) appears.

As source the information "Standard library" / "Current work directory" is
indicated.

FN_Auswahl.bmp

Fig. 7-6: Selection window, functions

The name of the desired function can be entered in the input field. While
entering letter by letter of the name the cursor in the selection window
jumps to the respective item with the corresponding initial letters.

Within rungs the window can be restricted to functions with suitable
syntax. Respectively, the upper input and the lowest output (main
connections) of the function are used.

7-6 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Instances of Function blocks
The footer command "5-FB" opens the selection window for already
declared instances of function blocks. They can be represented as list
(space saving) or with detail information.

If the option "Preview" is selected, a graphic representation of the function
block instances (interface) appears.

In addition to the name of the instance the declaration comment is
indicated.

fb_auswahl.bmp

Fig. 7-7: Selection window, instances of function blocks

The name of the desired function block instance can be entered in the
input field. While entering letter by letter of the name the cursor in the
selection window jumps to the respective item with the corresponding
initial letters.

As contrary to a function each input and output can be in connection with
a network, one further selection window pops up, if there are several
usable inputs and outputs of the same type.

bsp_fb_auswahl.bmp

Fig. 7-8: Selection of the right connection

WinPCL 06VRS Ladder Diagram Editor 7-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Label
The footer command "0-=>>(o)" appears, if the cursor in the right column
is positioned on a jump symbol or a negated jump symbol.

The selection window for already declared labels opens. They can be
represented as list (space saving) or with detail information.

Auswahl_Marke.bmp

Fig. 7-9: Selection window, label

The name of the desired label can be entered in the input field. While
entering letter by letter of the name the cursor in the selection window
jumps to the respective item with the corresponding initial letters.

7-8 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, SFCs
The footer command "<4>-SFCs" opens the selection window for already
declared SFCs. They can be represented as list (space saving) or with
detail information.

If the option "Preview" is selected, a graphic representation of the SFC
appears.

In addition to the name of the SFC its declaration comment is indicated.

SFC_Auswahl.bmp

Fig. 7-10: Selection window, SFCs

The name of the desired SFC can be entered in the input field. While
entering letter by letter of the name the cursor in the selection window
jumps to the respective item with the corresponding initial letters.

WinPCL 06VRS Ladder Diagram Editor 7-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Variables
Variable selection windows can only be called by contacts or coils or at
the inputs or outputs of function blocks or functions by pressing
<ALT>+<Enter>. They can be represented as list (space saving) or with
detail information.

As subset you can select type-specific or all variables.

If the option "Preview" is selected, a graphic representation of the variable
appears.

In addition to the name of the variable its declaration comment is
indicated.

Multi-element variables (instances of structures, ARRAYs or FBs) are
marked by a preceded gray arrow. You can open this variables by double-
clicking or pressing <Enter> on the respective variable. The elements can
be (recursively) selected.

In future, a switch for the return path upwards to the instance name is
planned.

VAR_Auswahl.bmp

Fig. 7-11: Selection window, variables

The name of the desired variable can be entered in the input field. While
entering letter by letter of the name the cursor in the selection window
jumps to the respective item with the corresponding initial letters.

7-10 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Absolute Addressed Variables
When entering an absolute address – e.g. %I1.1.2 – WinPCL verifies, if a
name, that is linked with the address via a declaration exists in the validity
area of the file. If a name is found, it is indicated in the selection window.

When confirming the element obtains this name, when rejecting the
absolute address remains at the element.

Auswahlfenster_Abs_Var.bmp

Fig. 7-12: Window to select the absolute address

WinPCL 06VRS Ladder Diagram Editor 7-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

7.4 Deletion in the Ladder Diagram

The key can be used for deletions in the ladder diagram.

Deleting elements

In the network, any element currently selected by the cursor is deleted.

Deletion takes place as follows:

• of an element -> contact becomes the connection line,

• of a connection line -> the connection line, i.e. the branch is
deleted.

The warning shown below is displayed if the cursor is positioned on a
connection line, a function block or a function, that means if a serious
"damage" is to be expected. The color of the elements affected changes
to red.

KOP_Löschen im Netzwerk.bmp

Fig. 7-13: Deletion in the network with the key

Deleting one or several networks

It is also possible to delete complete networks. To achieve this, the
network(s) has(have) to be selected and then deleted with the key.
The part to be deleted is clearly highlighted by the block selection.

7-12 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

7.5 Editing Features, Varying Color in the Ladder Diagram
Editor

At first, that section of the network where editing takes place is white on a
blue background during entry.

KOP_Eingabe_00.bmp

Fig. 7-14: Entry of an LD network, editing of a variable

The color of the marginal marking to the left side changes from "gray",
e.g. correct normal condition to "yellow", that means the network was
modified. At this time the section is still untested.

KOP_Eingabe_01.bmp

Fig. 7-15: Entry of a an LD network, variables identified as being correct,
network still untested, yellow marginal marking

Faulty networks, undeclared names or a combination of this, change their
color to red when you exit the edited section or the edited line. If the error
is not detected directly, position the cursor on the network and press
<Ctrl>+<F1> for online help:

KOP_Eingabe_03.bmp

Fig. 7-16: Entry of a an LD network, operand identified as being faulty, network
still untested, yellow marginal marking

WinPCL 06VRS Ladder Diagram Editor 7-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The test whether neighboring lines in a network match is not carried out
unless you exit the network, e.g. by moving the cursor out of the network.
The marginal marking to the left changes its color from yellow to gray, that
means everything is ok or to red, that means there is an error in the
network. The basic font color is dark-blue (no errors), the comment is
middle-blue, the left margin is gray.

KOP_Eingabe_02.bmp

Fig. 7-17: Network without errors after editing, marginal marking is gray

If faulty networks or variables were not corrected before the network test,
they are indicated in red and the marginal marking is indicated in red too.

KOP_Eingabe_04.bmp

Fig. 7-18: Network faulty after editing, marginal marking is red

This ensures that errors remain visible. They must be eliminated before a
successful compilation run can be started, but do not affect normal
operation. A complete check, including labels and jumps, is carried out
during the compilation attempt or the syntax test (Pop-up Menu, LD Editor
<Shift>+<F10>).

7-14 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Entry of a Simple Ladder Diagram
A simple ladder diagram network was chosen as an example for the entry.
An appropriate declaration part containing the necessary variables is
required:

kop_bsp_00.bmp

Fig. 7-19: Declaration part (example)

The input sequence below has to be followed (input mode).

Input sequence Comment

1on<Enter>coil1<Enter> Normally open contact "on", relay "coil1", cursor
automatically behind normally open contact "on"

33coil1<Enter> Normally open contact of "coil1" connected in parallel

<CursorUp><CursorRight>2off<Enter> Normally closed contact "off"

1normal<Enter> Normally open contact "normal"

2coil2<Enter> Normally closed contact "coil2"

<CursorLeft>3<CursorRight>3general<Enter> Parallel branch with normally open contact "general"

<CursorUp><CursorLeft>83i_flag<Enter> Temporary flag at this point only, because otherwise it
would be above the relay!

Cursor on contact "on"

90Begin<Enter> Label "Begin"

Similar to the instruction list, the declaration comment of the variable can
also be made visible in connection with the elements of the ladder
diagram. For this, position the cursor on the corresponding ladder
diagram element.

WinPCL 06VRS Ladder Diagram Editor 7-15

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

kop_Bsp_01.bmp

Fig. 7-20: LD with display of the declaration comment coil "coil1"

As already described in the chapter "Instruction list editor", the comment
can be used unchanged or can be overwritten for the current position. To
achieve this, press the <Ctrl>+<E> keys (edit comment) on the ladder
diagram element. The original declaration comment becomes visible after
deletion of this new comment.

Input sequence Comment

Cursor on relay coil1

<Ctrl>+<E>coil1 locked with coil2 <Enter> Input of the implementation comment

kop_bsp_02.bmp

Fig. 7-21: LD, declaration comment for coil1 overwritten

The old declaration comment can still be seen in the upper part while the
new comment is entered in the lower input window. Further methods to
make comments visible in the LD editor are to be found under menu item
"Extras / Options / View / LD".

7-16 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Subsequent Modifications and Extensions in the Ladder Diagram
The following elements can be replaced by toggling the enter and
overwrite mode:

Contacts (selection)
��æ������æ��������127

are mutually exchangeable. To achieve this:

• Position cursor on the required element and press the button
in the footer (overwrite mode) - or -

• Press the ’4-NOT’ key in the footer (mode: any).

Output elements (selection)
���������127����6������5�����!!����5(7!

are mutually exchangeable. To achieve this:

• Position cursor on the required element and press the button
in the footer (overwrite mode);
the ’4-NOT’ key modifies the current element.

The current name with the old symbol is removed if you enter a jump or
return.

Supplementation of additional terminating elements

• Position the cursor on the first element and
select the new element from the footer.

Overwrite mode: The new element is entered at the place of the old one.

Enter mode: The new element is placed to the right of the old one.

Enter mode: ’9-Place before. The new element is placed to the left of,
i.e. before the old one.

Warning when using temporary flags

Temporary flags allow the determination of intermediate results from
ladder diagram networks. The result of the branch positioned before the
temporary flag is applied. The temporary flag ‘i_flag’ assumes the value of
contact ‘kC’ (see instruction list!).

zMerker.bmp

Fig. 7-22: Temporary flag

Note: This statement also applies to functions and function blocks
which are used instead of the temporary flag!

WinPCL 06VRS Ladder Diagram Editor 7-17

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

If instead of the temporary flags functions or function block intances are
used, the same unexpected behavior occurs:

Instead of triggering the contacts connected in series, the time stages are
permanently triggered via 2#1 (TRUE).

Warnig_LD_01.bmp

Fig. 7-23: Warning when using FN/FB in OR branches

This problem can be solved, when the switching is changed
corresponding to the following figure:

Warnig_LD_02.bmp

Fig. 7-24: Workaround when using FN/FB in OR branches

7-18 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Entry of a Ladder Diagram with Additional Symbols
A repeated entry of the SELECT function in the ladder diagram allows
display of the work with additional elements, such as jumps, non-Boolean
assignments, type and code converters, and the like. A comment network
is placed before. The declaration part of this ladder diagram shows the
following structure:

select_int_dekl.bmp

Fig. 7-25: Declaration part of the function "SELECT_INT"

Input sequence Comment

87m_1<Enter>1Select<Enter> Cursor on jump to m_1

4<Enter> Network with negated jump is complete

3byte1<Enter>M_BYTE<Enter><Enter> Assignment of ‘byte1’ to ‘M_BYTE’

87m_2<Enter><CursorRight><Enter> Unconditional jump in segment

0m_1<Enter>3byte2<Enter>M_BYTE<Enter><Enter> Label ‘m_1’: Assignment of ‘byte2’ to ‘M_BYTE’

0m_2<Enter>6 Label ‘m_2’: Selection of the function via selection
window

Position the cursor on the CONCAT_BYTE function in the selection
window and confirm by pressing <Enter>.

Input sequence Comment

16#0<Enter>M_BYTE<Enter>
SELECT_BCD<Enter>

Upper input 16#0, lower input ‘M_BYTE’;
as output variable from end of network, in between
filled-in!

96INT_TO_BCD_WORD<Enter> Type converter from INT to BCD_WORD, ignore color
variation! Cursor on output FN CONCAT_BYTE.

3SELECT_INT<Enter> Temporary flag provides function value.

96WORD_TO_INT<Enter> Type converter from WORD to INT (cursor is
positioned on input ‚‘WORD_‘).

3SELECT_WORD<Enter> Temporary flag provides WORD value.

WinPCL 06VRS Ladder Diagram Editor 7-19

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Finally a comment has to be entered before the first network.

Position the cursor on line 1, column 1, contact ‘Select’, by pressing the
<Ctrl>+<Home> keys or dragging the cursor directly.

Input sequence Comment

99Input illustrated for the function ’SELECT_INT’ in
the ladder diagram<Enter>

Place before, comment, <Enter> for terminating the line,
new comment line is opened.

Special jumps and type converter <CursorDown> Comment line is terminated with exit.

If a network is to be inserted between the two comment lines, open the
pop-up menu by pressing the right mouse button or <Shift>+<F10> and
select the "Separate network" menu item.

Note: The name of the variable can be entered directly or a selection
window can be opened in the empty field by pressing
<Alt>+<Enter>.

select_int_kop.bmp

Fig. 7-26: Ladder diagram for function "SELECT_INT"

7-20 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Edge Contacts and Edge Coils in the Ladder Diagram
It is often possible to simplify networks in a ladder diagram or at least to
represent them more clearly, if edge contacts are used.

Here, the transition from a contact to its edge contact and vice versa is an
online change (and, analogously, from a coil to its edge coil).

Contacts for Detection of Transitions (Edges)
At the particular place where it is used, the "P" contact replaces the
combination of contact and instance of an R_TRIG function block. The
state to the right of the edge contact is TRUE from one execution process
to the next, if TRUE is applied to the left of the contact and the value of
the variable of the edge contact changes from FALSE to TRUE.

At the particular place where it is used, the "N" contact replaces the
combination of contact and instance of an F_TRIG function block. The
state to the right of the edge contact is TRUE from one execution process
to the next, if TRUE is applied to the left of the contact and the value of
the variable of the edge contact changes from TRUE to FALSE.

 Edge contacts with R_TRIG / F_TRIG

Fig. 7-27: Comparison of edge contacts and R_TRIG / F_TRIG

Note: A separate old value is assigned to each use of an edge
contact!

The pulse is active for exactly one PCL cycle, i.e. the network
must be executed at least twice.

Coils for Detection of Transitions (Edges)
The state of a variable pertaining to an edge coil is TRUE from one
network execution process to the next if

• there is a FALSE-TRUE transition to the left of a P coil,

• there is a TRUE-FALSE transition to the left of an N coil.

Note: A separate old value is assigned to each use of an edge coil!

The pulse is active for exactly one PCL cycle, i.e. the network
must be executed at least twice.

WinPCL 06VRS Ladder Diagram Editor 7-21

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Online Changes and Edge Evaluation, LD
If contacts are converted into edge contacts or coils for detecting edge
transitions, this results in the following transitions:

Rules for contacts:
• If a contact is converted into a contact with edge evaluation, it

assumes an old value initialized with FALSE. This value and the
current value of the variable form the basis of the behavior of the
contact.

• If a contact with "P" edge evaluation is converted into a contact with
"N" edge evaluation, the old value is initialized with FALSE. This value
and the current value of the variable form the basis of the behavior of
the contact. (This also applies to conversion of N into P!)

• If a contact with "P" edge evaluation is converted into another contact
with "P" edge evaluation (or N into N), the current old value remains
unchanged! This value and the current value of the variable form the
basis of the behavior of the contact.

• A new variable assumes a new old value initialized with FALSE. This
value and the current value of the variable form the basis of the
behavior of the contact.

• An inserted new contact for edge evaluation assumes an old value
initialized with FALSE. This value and the current value of the variable
form the basis of the behavior of the contact.

Changing the contact type and the value of the variable

New Same variable NEW variable

Old

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE FALSE FALSE FALSE FALSE 0-1-0 FALSE

FALSE 0-1-0 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

Fig. 7-28: Online change if contacts are concerned

Explanation:

Contact: Normally open contact, state of the variable FALSE

Contact: positive edge, state of the variable TRUE, etc. ..

7-22 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Rules for coils:
• If a coil is converted into a coil with edge evaluation, it assumes an old

value which is initialized with FALSE. This value and the current value
of the variable form the basis of the behavior of the coil.

• If a coil with "P" edge evaluation is converted into a coil with "N" edge
evaluation, the old value is initialized with FALSE. This value and the
current value of the variable form the basis of the behavior of the coil.
(This also applies to conversion of N into P!)

• If a coil with "P" edge evaluation is converted into another coil with "P"
edge evaluation (or N into N), the current old value remains
unchanged! This value and the current value of the variable form the
basis of the behavior of the coil.

• A new variable assumes the old value of its predecessor. This
value and the current value of the variable form the basis of the
behavior of the coil.

• An inserted new coil for edge evaluation assumes an old value
initialized with FALSE. This value and the current value of the variable
form the basis of the behavior of the coil.

Changing the coil type and the value of the variable

New Same variable NEW variable

Old

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE

FALSE 0-1-0 FALSE FALSE FALSE 0-1-0 FALSE FALSE

FALSE 0-1-0 0-1-0 FALSE FALSE 0-1-0 0-1-0 FALSE

Fig. 7-29: Online change if coils are concerned

Explanation:

Coil: normal, state of the variable FALSE

Coil: positive edge, state of the variable TRUE, etc. ..

WinPCL 06VRS Ladder Diagram Editor 7-23

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Operators in the Ladder Diagram
Ladder diagram networks can be opened and supplemented with
operators. An operator is selected with the footer command ’7-OP’. To
achieve this, position the cursor in the selection window on the required
operator position and confirm by pressing the <Enter> key.

The example here is a function. The declaration part is the starting point.

Vergl_Sum_dekl.bmp

Fig. 7-30: Declaration part of the function "EXTENSION_OP"

After having completed the declaration part, change to the ladder diagram
editor.

Input sequence

Input sequence Comment

9Comparison of two sums of INT
figures<CursorDown>

Comment input, completed by moving the cursor

7 Selection window for operators

Position the cursor in the selection window on the operator "EQ" and
confirm with <Enter>.

7-24 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

OP_Auswahl.bmp

Fig. 7-31: Selection window for operators

Input sequence Comment

INT1<Enter> First operand of the upper sum

INT3<Enter> First operand of the lower sum

EXTENSION_OP<Enter> Function output value, cursor to "INT1"

7 Selection of the adder, confirm with <Enter>

INT2<Enter> Second operand of the upper sum, cursor to INT3

7 Selection of the adder, confirm with <Enter>

INT4<Enter> Second operand of the lower sum

Note: The name of the variable can be entered directly or a selection
window can be opened in the empty field by pressing <Enter>.

Vergl_Sum_kop.bmp

Fig. 7-32: Ladder diagram for "EXTENSION_OP", margin yellow, untested

WinPCL 06VRS Ladder Diagram Editor 7-25

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Functions in the Ladder Diagram
As is the case with operators, several functions can be arranged in a
network, with the special feature that a network can be connected only to
the upper input and the lower output.

Temporary type incompatibilities can be ignored. The only fact to be
observed is the requirement that the left marginal marking has to change
from yellow or red to gray when the input is completed and the network
exited. If this requirement is not met, press <Ctrl>+<F1> for online help.

Example

The WINDOW function FENSTER checks whether the VALUE is between
MIN and MAX. If this is the case, the result is "1", if this is not the case,
the result is "0".

The VALUE is composed of SUMMAND1 and SUMMAND2.

As SUMMAND1 is available as a four-digit BCD-coded number, it has to be
converted into an integer number.

fenster_Pic.bmp

Fig. 7-33: Example for functions and operations

The user-specific "Window" function has to be made available before it
can be used. At least the declaration part of this function, that means the
interface, must exist, the implementation can be supplied later.

Fenster_dekl.bmp

Fig. 7-34: Declaration part of the "Window" function

7-26 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Declaration part of the example

fenster_vgl_dekl.bmp

Fig. 7-35: Declaration part of the "WINDOW_COMP" example

Enter the "Window" function, always starting with the most complicated
point. Then do the extensions to the right or to the left.

Input sequence Comment

6 FN selection window, select "WINDOW" and confirm with
<Enter>

Summand1<Enter> Enter the highest summand, ignoring type errors.

LowerLimit<Enter> Lower limit value

UpperLimit<Enter> Upper limit value

WINDOW_COMP Function value as result

If you exit the network with this status, the color of the marginal marking
changes to red. A type error occurred between the first input and the
"WINDOW" function. If you cannot identify the error, call up the pop-up
menu by pressing the right mouse button or the <Shift>+F10 keys, or
directly by pressing <Ctrl>+<F1> for online help.

Then you can continue the entry.

Input sequence Comment

Cursor on summand1

6 FN selection window, select "WORD_BCD_TO_INT",
press <Enter>,
Position cursor on output of FN "WORD_BCD_TO_INT"

7 OP selection window, select "ADD", <Enter>

Summand2<Enter> Enter the second summand.

WinPCL 06VRS Ladder Diagram Editor 7-27

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

If you exit the network now, the color of the marginal marking changes
from red to gray, i.e. the input is correct.

fenster_vgl_kop.bmp

Fig. 7-36: Ladder diagram of FN "WINDOW_COMP"

If the cursor is positioned on the name of a function which was written by
the user, branching to this function is possible by pressing the
<Ctrl>+<Enter> keys or double-clicking the mouse.

Function Blocks in the Ladder Diagram
The ladder diagram editor allows several function blocks per network.
They can be inserted in the same way like operations and functions.

Note: Function blocks can have networks at each input and output. If
they are inserted in existing networks, the user can choose the
desired one from a selection window.

The basic principles of the call-up will be explained by the example of an RS
flipflop, whose setting input should react to the edge of the input signal.

bsp_fb_dekl.bmp

Fig. 7-37: Declaration part for function block "EXTENSION_FB"

7-28 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

After declaration, the function block "r_trig1" is first unconditionally called
up in the following figure. Block "rs1" is then inserted.

Input sequence Comment

5 FB selection window, select r_trig1 , press <Enter>

1set<Enter> Input of the edge evaluation, cursor on FB output

1result<Enter> Output of the edge evaluation, cursor on FB output

5 FB selection window, select rs1 , press <Enter>

bsp_fb_auswahl.bmp

Fig. 7-38: Selection window for determination of the connection points

Either the set input or the reset input can be selected as the connection to
the block to be inserted, by pressing the cursor key / <Enter>.

The output is already preselected.

Input sequence Comment

Cursor on "S_" <Enter> Block is inserted. Cursor on "R_1"

1reset<Enter> Termination of the network

bsp_fb_kop.bmp

Fig. 7-39: Complete ladder diagram

WinPCL 06VRS Ladder Diagram Editor 7-29

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

7.6 Options, Ladder Diagram Editor

The options relevant for the ladder diagram editor can be selected with
the "Extras / Options" menu item:

Group Option Meaning

Desktop Restore size and position during startup The desktop is restored in the same size and position.

Restore MDI window during startup MDI windows are opened in the same order when
restarting the system.

Auto save Allows the automatic saving of the current file in
presettable time intervals without any prompt.

Sound Activation or deactivation of a beep sound.

View / All Apply column width modifications
automatically

Restoring of the column with same width.

Apply declaration comment in implementation Comments, that have been entered in the respective
declaration line are displayed in the implementation. The
implementation can be changed; the comment is then
doubled, the declaration line remains unaffected.

Variable display With symbols (name) or absolute (address).

Display of absolute variables The user can select from I/Q, E/A and I/O for absolute
addresses.

Truncating very long texts Texts and numbers can be truncated to the right or left,
and

Truncating very long numbers can be represented with or without "..." marking.

View Columns 7

Column width for the individual columns 72

(with standard values)

Comments Indication of the declaration comments above the
variables.

Absolute represented Indication of the absolute addresses above the
variables.

Fig. 7-40: LD editor options

7-30 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

7.7 Status Display in the Ladder Diagram Editor

kop_status.bmp

Fig. 7-41: Status display in the ladder diagram

Further ways to get status information are:

• Start / Force <Shift>+<F8> for elementary variables
(ANY_ELEMENTARY)

• Start / Status ARRAYs / Structures <Shift>+<F3>

WinPCL 06VRS Ladder Diagram Editor 7-31

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

7.8 Online Editing in the Ladder Diagram

The online edit feature in the present version allows the exchange of
codes for a program, a function block or a function without changing the
data of the concerned POU. A machine or plant can continue its working
cycle although the program code was changed (also see Online Changes
and Edge Evaluation, LD).

Changes in the implementation of one program organization unit, which
require neither declaration nor imports, are allowed at present. All other
changes are not online capable.

Status of the POU >>Status<<

A running PLC program with activated status display is the initial condition
for online editing. In the following example the "motor_left" locking contact
is to be added online.

Identification: "Status" is indicated in the right bottom corner.

online_kop_01.bmp

Fig. 7-42: Before an online modification, still status = On

Status of the POU >>Online<<

The online editing mode is initiated by inserting the contact. The color of
the marginal mark for the actual network changes from blue to yellow (for
colors see Chapter "Editing Features, Varying Color in the Ladder
Diagram Editor").

Identification: "Online" is indicated in the right bottom corner.

online_kop_02.bmp

Fig. 7-43: Inserting the locking contact online (1st step)

7-32 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

online_kop_03.bmp

Fig. 7-44: Inserting the locking contact online (2nd step)

Download of the change

The online changing is completed with the download of the changed code
into the control by means of the "Start / Download "xx" in control "xx""
menu item or by pressing <Ctrl>+<F9>.

Identification: "Status" is indicated in the right bottom corner.

online_kop_04.bmp

Fig. 7-45: Completion of the online changing with download

WinPCL 06VRS Ladder Diagram Editor 7-33

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Changes which are not online capable

Online changes in the implementation of one program organization unit,
which require neither declaration nor imports, are allowed at present.

Kind of change Operating
mode

Deletion of a network Online

Deletion of a contact or an IL line Online

Insertion of a new network or a new IL line Online

Insertion or change of a contact, a coil, an instruction or the like Online

Insertion of labels or jumps Online

Insertion of a currently declared function block Online

Insertion of a function which was already used in the POU (new
imports are not online capable as yet!)

Online

Change of network properties of existing networks
(at least one network of the POU has to provide activated
network properties!)

Online

Change of network comments in IL / ladder diagram Online

New declaration or change of declaration of variables or
instances of programs / function blocks, as well as in all lists

Edit

Insertion or deletion of steps, transitions and actions Edit

First application of network properties or deletion of the last
network properties

Edit

Change of the action qualifier and/or the action time of an action
block

Edit

Change of comments in all lists, in SFCs, action blocks and in all
declarations

Edit

Changes in the IO editor Edit

Changes in a second file, if there is already one file in the Online
Edit mode

Edit

Fig. 7-46: Overview of online capable changes (selection)

7-34 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

7.9 Pop-up Menu, LD Editor <Shift>+<F10>

The pop-up menu contains the essential commands for this editor. It can
be opened by pressing the right mouse button or the <Shift>+<F10> keys.

Menu items Explanation

Open Branch, also <Ctrl>+<Enter>

Edit comment Edit the comment of the current LD element

New network - by adding an empty IL line before the current network
- by adding an empty LD network before the current network
- by adding an empty IL line behind the current network
- by adding an empty LD network before the current network

Delete network Deletion of the current network (see marginal marking).

Separate network Command to disconnect networks e.g. for multi-line comments.

Connect network Service command

Convert network to - an IL network
- convert complete editor contents into IL networks using "IL (all)"

ProVi messages Display and modification of the diagnosis properties

Import implementation The ASCII file selected from the "WinPCL text files" is attached to the current element.

Export implementation The complete contents of the ladder diagram editor is exported as an ASCII file and stored in
the folder "WinPCL text files".

Export network The complete LD network is exported as an ASCII file and stored in the folder "WinPCL text
files" (marginal marking).

Syntax text List of all errors in the current editor. You can move to the place where the error occurred by
double-clicking the mouse or by pressing the <Ctrl>+<Enter> keys.

Error help The line, where the cursor is positioned, is tested for correct syntax. If an error is detected,
this error is explained, also possible with <Ctrl>+<F1>.

Declaration help Description of the interface of the data type or of the function block type of the current line,
also use <Shift>+<F1>.

Cross reference help List of all places where the variable is used.
The place of use can be reached by double-clicking the mouse or pressing the
<Ctrl>+<Enter> keys.

Force Allows the entry of a variable name. The value of the variables is indicated and
can be forced once. The window remains open and the process can be activated again.
Forcing takes place between the update of the input variable and the start of the program
code execution.

Status ARRAYs /
Structures

Display of the status of array and structure elements, forcing by pressing the <Shift>+<F10>
keys or the right mouse button.

Print current window Print of the editor contents with <Ctrl>+<P>.

Display of the options Display of the (symbolic) names of the variable or
display of the absolute addresses of the variable, if provided

Internals Search for faults in the programming system, to be used only if approved by the service.

Fig. 7-47: Pop-up menu of the ladder diagram editor

WinPCL 06VRS Ladder Diagram Editor 7-35

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

7.10 Block Commands, LD Editor

Select the networks by pressing and holding the SHIFT KEY while using
the corresponding arrow key or by pressing and holding the left mouse
key while dragging it across the text.

You can select LDs for every network by clicking the gray bar on the left
outer side.

Extending the selection Key combination

One character to the right <Shift>+arrow key<to the right>

One character to the left <Shift>+arrow key<to the left>

To the end of the line <Shift>+<End>

To the beginning of the line <Shift>+<Home>

Down by one line <Shift>+<down> arrow key

Up by one line <Shift>+<up> arrow key

Down by one page <Shift>+<Page down>

Up by one page <Shift>+<Page up>

Deletion of text Keys

Deleting the character to the left of the
cursor

BACKSPACE KEY

Deleting the character to the right of
the cursor

Copying and moving of text Key combination

Copying the text selected to the
clipboard

<Ctrl>+<C>

Moving the text selected to the
clipboard

<Ctrl>+<X>

Pasting the contents from the
clipboard

<Ctrl>+<V>

7-36 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

7.11 Search and Replace, Ladder Diagram Editor

is in the first version and provides the features of a text editor:

kop_suchen.bmp

Fig. 7-48: Search in the ladder diagram editor

7.12 Cross Reference List, LD Editor

In contrast to the cross references of the pop-up menu, the overview
opened via "View \ cross reference list" shows all variables. Of course,
only variables from lines with the correct syntax can be resolved by their
place of use. All faulty names or names with double declaration are
displayed and can, thus, be reached by double-clicking the mouse or by
pressing the <Ctrl>+<Enter> keys.

kop_qvl.bmp

Fig. 7-49: Cross reference list with LD applications

WinPCL 06VRS Ladder Diagram Editor 7-37

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Pictogram Meaning

-[]-, -[/]- Normally open contact, Normally
closed contact

-|, |- Input, output of functions or function
blocks

CAL Block call

-()-, -(/)- Relay, negated relay

-(S)-, -(R)- Set, reset relay

7.13 Documentation, Ladder Diagram Editor

Documentation must be implemented by using the column number and
width specified under / Options, Ladder Diagram Editor / View / LD.

print_kop.bmp

Fig. 7-50: Print options in ladder diagrams

In addition, the declaration comment and / or the absolute represented, if
provided, can be displayed above the variables.

The "Apply" button activates the column width set for the instruction list
editor. The width of the column can either be entered in the window
shown above or preset in the editor by dragging the headers.

The "Standard" button resets the default.

The "OK" button applies the setting and closes the dialog window.

The "Cancel" button closes the window; the previous values are kept.

Detailed information on the real print process and the features is to be
found in the section on WinPCL.

7-38 Ladder Diagram Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL 06VRS SFC Editor 8-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

8 SFC Editor

8.1 Basic Sequential Function Chart Elements (SFC
Elements)

The SFC elements allow the establishment of SFCs within function blocks
and programs, with SFC standing for SEQUENTIAL FUNCTION CHART.

SFCs are supported in two performance categories:

• simple SFCs with one or a few steps having been used for structuring
programs and function blocks, as has been usual under DosPCL
(BASIC type, should not be used any longer),

• one or more SFCs in a program or function block with system-
supported mode control and/or diagnosis with criteria analysis
(IndraStep type).

One of these two types must be selected when opening a Opening an
SFC in the SFC List .

The two types are different from each other in their data types assigned to
the SFCs, transitions and actions and supported by the system. The
IndraStep type completely covers the BASIC type, i.e. it contains an
extended set of system variables.

SFCs contain steps and transitions which are connected to each other
through oriented lines.

Moreover, alternative (OR) branches and parallel (AND) branches can be
realized in the SFCs.

Steps
The step is a basic element of the sequential function chart.

In every step

• zero times,

• one or

• several actions

can be released (see chapter "Action block editor").

With a program running on the control, a step is either active or inactive.

Initial step

Within an SFC, it is always the first or starting step that is of particular
importance. It is called initial step of the SFC. The SFC starts and
terminates with this initial step.

If a step is entered before, this step becomes the initial step.

A name has to be entered for each step, also for the initial step.

Further a comment on the step is required after entry of the step name.

8-2 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Graphic representation of steps

Initialschritte.bmp

Left: Color white -> initial step does not yet contain any actions
Right: Color gray -> initial step contains one or several actions

Fig. 8-1: Initial steps

Schritte.bmp

Left: Color white -> step does not yet contain any actions
Right: Color gray-> step contains one or several actions

Fig. 8-2: Steps

Elements of a step

When assigning data types to steps, transitions, actions and to the SFC,
the user defines to which elements per step the program has access.

If he selects the BASIC features stored in the library (firmware data type
_tSTEP), he has access to the following elements:

_tSTEP STRUCT Firmware data types step

X BOOL Step flag TRUE, if step is active

F BOOL TRUE - forcing of the step, possible only in
manual mode

SYNC BOOL TRUE - request to set this step for
synchronization

T TIME Step active time - read only, time elapsed since
activation of the step

END_STRUCT

Fig. 8-3: _tSTEP structure

Example:

Time monitoring of step sA1:

Label Operation Operand Comment

LD sA1.T (If) step active time of step sA1

LE T#15s Equal to or less than 15 sec

JMPC Jump to ...

Fig. 8-4: Time monitoring of step sA1

WinPCL 06VRS SFC Editor 8-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Transitions
The transition is the second basic element of the sequential function
chart. A condition, under which the control of one or several previous
steps of this transition to one or several subsequent steps is running
along the oriented lines, is assigned to each transition. The transition
takes place if the transition condition is fulfilled.

A condition can be written as

• instruction list or

• ladder diagram network.

Functions can also be used within the condition.

A not fulfilled transition condition is defined as permanently fulfilled.

A name has to be entered for each transition. You are prompted to enter
a comment after input of the transition name but this is not mandatory;
you can continue with <Enter>. If the name is entered twice, the same
content is assumed automatically, but a new comment on the application
is requested.

Individual Boolean variables or the constants TRUE (permanently fulfilled)
and FALSE (never fulfilled) can be entered directly as an alternative.

Graphic representation of transitions

Transitionen.bmp

Left: Transition, network as transition (condition)
Middle left: Boolean variable as transition (condition)
Middle right: Negated Boolean variable as transition (condition)
Right: TRUE (and FALSE)

Fig. 8-5: Transitions

Elements of a transition (not available for Boolean and negated
Boolean transitions as well as TRUE and FALSE)

When assigning data types to steps, transitions, actions and the SFC
itself, the user defines the elements his program can access per
transition:

If he selects the BASIC features stored in the library (data type
_tTRANSITION), he has access to the following elements:

_tTRANSITION STRUCT Firmware data types transition

JOG BOOL Write, only in AUTOMATIC JOG mode;
TRUE if advancing of the transition after firing is
disabled.

END_STRUCT

Fig. 8-6: _tTRANSITION structure

Example:

Advancing of the transition tA1 in the automatic jog mode is disabled:

Label Operation Operand Comment

LD TRUE Load TRUE

ST tA1.JOG Transition tA1 disabled

Fig. 8-7: Advancing of the transition tA1 in the automatic jog mode is disabled

8-4 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Multiple Request of Conditions in Transitions
If two successive transitions are made conditional on the same variable in
one and the same SFC, there are the following possibilities:

• The state of the same variable is evaluated in both transitions:

• Both transitions have the same name (and, thus, the same content)
- the actions of either step are processed in successive PLC cycles.

• Both transitions have different names, but nevertheless the same
content - the actions of either step are processed in successive
PLC cycles.

• The (rising) edge of the same variable is evaluated in both transitions:

• Both transitions have the same name (and, thus, the same content)
- the edge is effective for the first transition only. To achieve the
next transition, the variable must realize a 1-0-1 transition
(Whenever the switch is actuated, the step is advanced).

• Both transitions have different names, but nevertheless the same
content - the edge is effective for both transitions only. If the switch
is actuated only once (0-1 transition), the actions of either step are
processed one after the other in successive PLC cycles.

Oriented Lines
The SFC direction within an SFC is defined by oriented lines. An SFC is
processed from top to bottom and/or from left to the right. There may be
jumps within an SFC.

For a clearer arrangement, however, the representation of an SFC does
not contain any crossings.

Graphic representation of oriented lines

Anwendung gerichteter Verbindungen.bmp

Fig. 8-8: Oriented lines (jumps with destinations)

WinPCL 06VRS SFC Editor 8-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Alternative SFCs
The alternative SFCs always start with a transition after the branching
point and end with a transition. In exceptional cases, an alternative SFC
can consist of one transition only.

Starting from one step, i.e. "Step sB1" in the example, the SFC branches
depending on which transition condition is fulfilled:

For transition

• tB1 to step sC1,

• tB2 to step sC2 and

• tB3 to step sB1 (jump).

If the conditions of several transitions are fulfilled at the same time, the
leftmost SFC is continued.

Example:

The conditions of the transitions tB2 and tB3 are fulfilled at the same time,
the SFC is continued to step sC2.

sfc_alt_branch.bmp

Fig. 8-9: Alternative SFCs

Normal SFCs end in a junction after the terminating transitions tD1 or tD2,
see example. If the exceptional jump case is concerned, the entry point
(in the example before step sB1) is identified by a connecting arrow and
the name of the jump element (in the example transition tB3).

8-6 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Parallel SFCs
After a common transition, there is a transition to two or several SFCs
which have to be executed in parallel.

The SFCs start and end with one step before the junction.

sfc_sim_branch.bmp

Fig. 8-10: Parallel SFCs

The steps sB1 and sB2 become active when transition condition tA1 is
fulfilled and the previous step sA1 is active.

The SFCs are executed at the same time, but independently from each
other.

The junction is controlled by the common transition tC1 and takes place
after execution of the two SFCs, that means after sC1 and sC2 and the
transition condition tC1 are fulfilled.

WinPCL 06VRS SFC Editor 8-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Execution Rules of the Sequential Function Chart
Sequence of step / transition / step

The first step , i.e. the initial step sA1, becomes active upon start of an
SFC. The further execution sequence can be seen from the following
illustration of a simple SFC without branches.

sfc_sequence.bmp

Fig. 8-11: Sequence of step / transition / step

Condition is that step sA1 is active. The condition which belongs to
transition tA1 is calculated. Step sA1 remains active if this condition is not
fulfilled, that means is logic 0.

If the condition is fulfilled, that means is logic 1, the transition switches
and the subsequent step sB1 becomes active. Step sA1 is deactivated
simultaneously.

Execution of alternative branches

In the alternative sequence shown below step sB1 is assumed as being
active. The calculation of the transition starts at the left with the order tB1,
tB2, tB3.

Step sB1 remains active if none of the conditions belonging to the
transactions are fulfilled.

If a condition, tB1 or tB2, is recognized as being fulfilled the following step
sC1 or sC2 is activated and step sB1 is deactivated.

Further transitions belonging to this branch are no longer executed as
their previous step sB1 is not active any more.

sfc_open_alt_branch.bmp

Fig. 8-12: Opening of an alternative branch

The junction of alternative SFCs or even a jump point are executed
normally.

8-8 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Execution of simultaneous branches

In the SFC with conjunctive branching shown below, step sA1 is assumed
as being active. The condition which belongs to transition tA1 is calculated.

Step sA1 remains active if this condition is not fulfilled, that means is logic
0. If the condition is fulfilled, that means is logic 1, the transition switches
and the subsequent steps sB1 and sB2 become active. Step sA1 is
deactivated simultaneously.

sfc_open_sim_branch.bmp

Fig. 8-13: Opening of a simultaneous branch

There is one active step in each of the parallel partial SFCs after passing
of the simultaneous branch. All active steps are executed once within one
PLC cycle, starting from left to right.

Execution of the junction of simultaneous SFCs

The combination of simultaneous SFCs is explained by means of the
following figure.

Step sD1 can become active only if the condition of the previous transition
tC1 is fulfilled and all previous steps (sC1 and sC2 in the example) are
active. Step sD1 deactivates the previous steps sC1 and sC2 after it was
activated.

sD1 cannot be activated if one of the previous steps is not active and/or
the transition condition is not fulfilled.

sfc_close_sim_branch.bmp

Fig. 8-14: Closing of a simultaneous branch

WinPCL 06VRS SFC Editor 8-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

8.2 Entering SFCs in the SFC Editor

The work in the SFC editor will be described below by means of a simple
example, the operating mode control for a SCARA robot.

At first, opening of a sequence (SFC) is explained. This is followed by a
description of the insertion of steps, transitions, branches, and junctions.
Next the deletion methods are shown. Work with block commands is
explained in the concluding examples.

Opening an SFC in the SFC List
An SFC is opened in the "View / SFC" menu item.

This SFC list contains all SFCs contained in the POU with

• its steps,

• transitions, and

• actions;

and

• any steps,

• transitions, and

• actions,

not contained in the sequences mentioned above.

The user can enter any name in the "Name" column. The SFC is called
up in the following with this name.

AblaufListe_Fusszeile.bmp

Fig. 8-15: Entering the SFC name; continue with footer to enter the type

Use the footer command "2-Basis" to complete the "Type" column. This
command activates a complete set of data types for the SFC, steps,
transitions and actions.

A comment can be attached.

8-10 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

AblaufListe_Fusszeile_01.bmp

Fig. 8-16: SFC table for the example "Scara"

The table comprises the lists of steps, transitions and actions pertaining
to the particular SFC concerned.

Note: When the Basis version is selected, the data types _tSFC,
_tSTEP, _tTRANSITION, _tACTION are assigned to the SFC
elements.

The footer command "3-Indra-Step", however, opens a dialog window for
selecting an SKD file. Further procedures are described in the IndraStep
documentation.
Double-clicking or pressing the <Ctrl>+<Enter> keys permits branching
into the SFC.

Pressing the <Enter> key inserts a blank line where a further SFC can be
designed.

Note: If the cursor is positioned on the already existing SFC, the
blank line is placed before it. With the cursor at any other
position, the blank line is added behind.

Program Example of the "Scara" SFC
The following is assumed:

• the declaration of the Boolean variables IAuto, ISemi, ISetup and
MXPowerOn in "View / declaration editor".

Deklaration Scara.bmp

Fig. 8-17: Declaration of the variables

WinPCL 06VRS SFC Editor 8-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• Opening an SFC in the SFC List in View / SFC

AblaufListe_Fusszeile_01.bmp

Fig. 8-18: SFC list for the "Scara" example

• Branching to the SFC editor

When you enter a new SFC structure within a program, first an empty
screen appears.

sfc_scara_empty.bmp

Fig. 8-19: Empty SFC editor ready for entering the SFC

The applicable commands can be found in the footer.

Number Contents

<1> Insertion of a pair of step / transition or transition / step pair

<2> Opening / Closing of a simultaneous branch (AND branch)

<3> Opening / closing of an alternative branch
(OR branch)

<9> Toggling insertion before / insert behind

<0> Editing of step and transition names and comments

Fig. 8-20: Provided footer commands and their functions

The previous figure shows the currently possible way, to enter the initial
step and the following transition by pressing the <1> key.

The names including pertaining step and transition comments have to be
added for both step and transition. If no comment is to be entered,
confirm the comment field by pressing the <ENTER> key. The above-
mentioned "Scara" SFC is shown below. It should be self-explaining by
the chosen name.

8-12 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Ablauf scara.bmp

Fig. 8-21: "Scara" SFC

Input sequence Comment

<1>Init<Enter>
General initialization, clear error<Enter>
Init_Ok<Enter>
Init_Ok and start of SFC enabled?<Enter>

Input of the first pair, step with comment and transition
with comment

WinPCL 06VRS SFC Editor 8-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Ablauf scara 01.bmp

Fig. 8-22: Initialization step with transition and return jump

The white basic color of the step indicates that the element is not filled in
yet.

Thereafter, the complete sequence of the main path must be entered
without considering planned branches or junctions.

Input sequence Comment

<1>Power_On<Enter>
Turn-on power amplifier<Enter>
Power_Ok <Enter>
LV activation runs as scheduled?<Enter>

Next pair in the SFC

<1>W_01<Enter>
Wait for mode selection or LV error<Enter>
IAuto<Enter>
Automatic mode enabled?<Enter>

Boolean variable

<1>Automatic<Enter>
Automatic single mode<Enter>
No_Auto<Enter>
Automatic deactivated?<Enter>

<1>W_02<Enter>
Wait for mode selection or deactivation?<Enter>
MXPowerOn<Enter>
Turn off LVEnter>

<4> Negation of a Boolean variable

<1>Power_Off<Enter>
Turn off LV<Enter>
TRUE<Enter> <Enter> Renunciation of comment

8-14 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Ablauf scara 02.bmp

Fig. 8-23: Main sequence without branches

The input is continued as shown in the figure below:

Input sequence Comment

Cursor on transition Power_Ok

<3>Power_Not_Ok<Enter>
Error upon turn-on?<Enter>

OR branch, transition with comment

The opened branch is to be closed next. If the cursor is on a transition
and is moved across the steps and transitions already entered, you can
see that closing of the alternative is offered below the transition in the line
of the footer commands.

The branch is terminated below the transition No_Auto.

WinPCL 06VRS SFC Editor 8-15

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Ablauf scara 03.bmp

Fig. 8-24: Termination of the branch

Input sequence Comment

Cursor below transition No_Auto

<3> Termination of the branch

According to the defined task, the structure is expanded by the alternative
operating mode steps Semi_Automatic and Setup.

Input sequence Comment

Cursor above transition IAuto

<3>ISemi<Enter>
Single mode enabled?<Enter>

OR branch, Boolean transition

<1>Semi_Automatik<Enter>
Single mode<Enter>
No_Semi<Enter
Single mode deactivated?<Enter>

Step with comment + transition with comment,

Cursor below transition No_Auto

<3> Close branch
Cursor above transition Isemi

<3>ISetup<Enter>
Manual mode enabled?<Enter>

Boolean variable

<1>Setup<Enter>
Manual mode<Enter>
No_Setup<Enter
Manual mode deactivated?<Enter> Cursor below transition No_Semi

<3> Terminate branch

8-16 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Ablauf scara 04.bmp

Fig. 8-25: Alternative operating modes

The return jump still missing for operating mode change follows:

Input sequence Comment

Cursor above transition MXPowerOn

<3> New_Mode<Enter
New mode selected?<Enter>

Cursor below transition Power_Ok

<3> The structure is now completely terminated.

WinPCL 06VRS SFC Editor 8-17

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Absolute Addressed Variables
When entering an absolute address – e.g. %I1.1.2 – WinPCL verifies, if a
name, that is linked with the address via a declaration exists in the validity
area of the file. If a name is found, it is indicated in the selection window.

When confirming the element obtains this name, when rejecting the
absolute address remains at the element.

Auswahlfenster_Abs_Var_Trans.bmp

Fig. 8-26: Window to select the absolute address (here: in a detail of a
transition)

8-18 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Viewing the SFC in the SFC List
In the SFC list, the steps, transitions, and actions including their
comments can be viewed in a drop-down menu (by clicking the mouse or
pressing the <+> key).

The figure below shows the step list.

AblaufListe_01.bmp

Fig. 8-27: Steps of the Scara SFC in the SFC list

Double-clicking the mouse or pressing the <Ctrl>+<Enter> keys with the
cursor positioned on the name of the step (or transition or action) permits
"branching" into the step.

WinPCL 06VRS SFC Editor 8-19

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Entry of the Sequence for Execution in View / Implementation
At that point, the SFC does exist in the POU, but has not yet been
executed. Thereafter, the SFC in the menu item "View / Implementation"
(LD or IL) must be used.

Impl_Ablauf_01.bmp

Fig. 8-28: Entering the SFC in a blank LD network. "4-SFC"

After clicking on "4-SFC", the desired SFC can be selected from the
selection window. This SFC appears as a yellow "block" in the LD.

Impl_Ablauf_02.bmp

Fig. 8-29: Calling up the SFC in the implementation of the FB in the LD

After moving from the ladder diagram (LD) to the instruction list (IL), the
following equivalent window opens:

Impl_Ablauf_03.bmp

Fig. 8-30: Calling up the SFC in the implementation of the FB in the IL

In this line, which is essential to execution, the name of the SFC is called
up using the CAL instruction. The comment on the SFC is applied
automatically.

Caution: The SFC is no function block instance!

Note: The SFC will not be executed if you forget this call.

8-20 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Move to the sequence (SFC) by double-clicking the mouse or pressing
<Ctrl>+<Enter> with the cursor positioned on the sequence name
("sfc_1").

The implementation can have any number of additional IL lines and LD
networks. The SFC is executed at the corresponding place. Loading of
the variables of the SFC for realizing operating modes is a typical
application.

Ablauf_Betriebsarten.bmp

Fig. 8-31: SFC mode control in the ladder diagram

Note: Deleting an SFC from the implementation represents an online
change.

The previous state of the SFC remains unchanged, but
execution of the SFC is stopped.

WinPCL 06VRS SFC Editor 8-21

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Insertion of Steps, Transitions, Branches and Junctions
Additional elements are to be inserted in an existing SFC. To this end,
the current footers of the editor and the original SFC will be shown, the
necessary key combinations will be listed, and the new SFC will be
specified.

Insertion of Steps and Transitions
A step from where a pair of transition and step is inserted, is the starting
point. The SFC must not contain more than one opened branch.

Before Key sequence After

Place behind

Place before

Fig. 8-32: Insertion of steps and transitions beginning with the step

8-22 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

 A transition from where a pair of step and transition is inserted, is the
starting point. The SFC must not contain more than one opened branch.

Before Key sequence After

Place behind

Place before

Fig. 8-33: Insertion of steps and transitions beginning with a transition

WinPCL 06VRS SFC Editor 8-23

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Opening and Closing OR Branches
OR branches always start after steps and end after transitions.

Before Key sequence After

Closing must always be
done to the left! Possible
positions are shown in
yellow in the figure.

Fig. 8-34: Opening and closing OR branches

8-24 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Opening and Closing AND Branches
AND branches always start after transitions and end after steps.

Before Key sequence After

Closing must always be
done to the left!

Fig. 8-35: Opening and closing AND branches

WinPCL 06VRS SFC Editor 8-25

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Opening Branches
The opening of branches is triggered with the key.

branch_collect_02_open.bmp

Fig. 8-36: Cursor positions for opening branches with the - key

Note: Opening of branches requires that the SFC is completely
closed at that point, since an SFC structure can only have one
open branch.

Opening of the main branch is not possible.

Deletion of Steps, Transitions and Branches
The deletion of steps, transitions and branches is triggered with the
 key.

Note: As a standard, a step is always deleted including its action
blocks and actions and a transition is always deleted including
its advancing conditions, if used for the last time.

A warning is displayed before deletion takes place.

The key deletes

1. pairs, consisting of the step where the cursor is positioned and an
immediately following transition, e.g. sD1 cursor position and tD1,

2. pairs, consisting of the transition where the cursor is positioned and
an immediately following step, e.g. tC1 cursor position and sD1,

8-26 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Löschen SFC_01.bmp

Yes Deletion of the red step + the red transition in the SFC
and in the SFC list

No Deletion of the red step + the red transition in the SFC, but
they are preserved in the SFC list.

Cancel The deletion process is stopped, steps and transitions remain
preserved.

Fig. 8-37: Deletion of step and transition in pairs with the key

3. the respective single element, i.e. step or transition, of an open
branch, e.g. transition tC4,

branch_collect_03_erase.bmp

Fig. 8-38: Deletion of the last element of an open branch

WinPCL 06VRS SFC Editor 8-27

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

4. the complete branch (except the main branch at the junction), no
matter whether this branch is open or closed.

branch_collect_02_erase.bmp

Fig. 8-39: Cursor positions for deleting the branches below

Note: If the opening and closing lines were superimposing each
other after deletion, deletion would be prevented, e.g. tB1
cursor position and sC1 in the figure above !

8-28 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Preserving Deleted Steps, Transitions and Actions; Re-use
If the prompt "Also delete the declaration when using the step
(transition / action block) for the last time" is answered with NO, they
remain preserved. They can be viewed in the lower part of the SFC list.

AblaufListe_02.bmp

Fig. 8-40: SFC list, "Setup" step and "No_Setup" transition deleted

The step "Setup" and the transition "No_Setup" are moved to the unused
area, since they have been used for the last time before deletion.

The step "Setup" is accompanied by the action "ab2" which it uses
exclusively. This action has likewise been used only once.

Note: Blank steps or blank transitions as well as Boolean transitions
are not moved to the lower area, because they can be
reproduced without any problems.

If re-entered in one of the SFCs, the step or transition concerned is again
moved to the appropriate position. The step is accompanied by its action.

WinPCL 06VRS SFC Editor 8-29

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

8.3 Editing Features, Varying Color in the SFC Editor

The basic colors of a correct SFC are dark-blue font on a gray or white
background. The color of the element changes to red if a step or
transition is not filled in completely or is faulty. The following illustration
shows some of the error situations:

sfc_fehler.bmp

(1): Incorrect step name because of "["
(2): Incorrect transition name because of "["
(3): Error in an action block, is handed to the top
(4): Error in the transition, is handed to the top
(5): Step name is missing
(6): Transition name is missing

Fig. 8-41: Faulty SFC

8-30 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

8.4 Status Display in the Sequential Function Chart

If a program resides in the control system for execution, the following
status information can be displayed in the SFC editor:

• Color-coded steps are active, and their action blocks can be executed.

• Color-coded transitions are tested for being fulfilled.

sfc_status.bmp

Fig. 8-42: Status display in the SFC editor

Further ways to obtain status information are:

• Start / Force <Shift>+<F8> for elementary variables
(ANY_ELEMENTARY)

• Start / Status ARRAYs / Structures <Shift>+<F3>.

WinPCL 06VRS SFC Editor 8-31

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

8.5 Options of the Sequential Function Chart

The options relevant for the SFC editor can be selected by means of the
"Extras / Options" menu item:

Group Option Meaning

Desktop Restore size and position during startup The desktop is restored in the same size and position.

Restore MDI window during startup MDI windows are opened in the same order when
restarting the system.

Create backup copy Automatic storage of the source condition which was
loaded into the control in "downloaded files".

Auto save Allows the automatic saving of the current file in
presettable time intervals without any prompt.

Sound Activation or deactivation of a beep sound.

View / All Apply column width modifications
automatically

Column width changes are automatically stored.

Apply declaration comment in
implementation

Comments, that have been entered in the respective
declaration line are displayed in the implementation. The
implementation can be changed; the comment is then
doubled, the declaration line remains unaffected.

Variable display With symbols (name) or absolute (address).

Display of absolute variables The user can select from I/Q, E/A and I/O for absolute
addresses.

Truncating very long texts Texts and numbers can be truncated to the right or left,
and

Truncating very long numbers can be represented with or without "..." marking.

View / SFC Column width for the individual columns 72

(with standard values)

Fig. 8-43: SFC editor options

8-32 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

8.6 Pop-up Menu, Sequential Function Chart <Shift>+<F10>

This pop-up menu contains the essential commands for this editor. It can
be opened by pressing the right mouse button or the <Shift>+<F10> keys.

Menu items Explanation

Open Branch to the step, transition, also <Ctrl>+<Enter>

Edit comment Input or change of the step or transition comment

Delete Deletion of the current element and its successor.

Step time Input or change of the minimum and maximum step dwell time

Diagnosis properties Display and modification of the diagnosis properties.

Import implementation The ASCII file chosen from the "WINPCL text files" is attached to the current element.

Export step / transition The current step / transition pair is exported as an ASCII file and stored in the folder
"WINPCL text files".

Export SFC The complete SFC is exported as an ASCII file and stored in the folder "WINPCL text files".

Syntax text List of all errors in the current editor. You can move to the place where the error occurred by
double-clicking the mouse or by pressing the <Ctrl>+<Enter> keys.

Error help The sequence, where the cursor is positioned, is tested for correct syntax. If an error is
detected,
this error is explained, also possible with <Ctrl>+<F1>.

Declaration help Description of the data type of the current element, where the cursor is positioned.

Cross reference help List of all places where the current element is used.
The place of use can be reached by double-clicking the mouse or pressing the
<Ctrl>+<Enter> keys.

Force

PLC in operating mode
"STATUS"

Allows the entry of a variable name. The value of the variables is indicated and
can be forced once. The window remains open and the process can be activated again.
Forcing takes place between the update of the input variables and the start of program code
execution.

Status ARRAYs /
Structures

Display of the status of array and structure elements, forcing by pressing the <Shift>+<F10>
keys or the right mouse button.

Print current window Print of the editor contents by pressing <Ctrl>+<P>.

Options Optimization of the column width.

Internals Search for faults in the programming system, to be used only if approved by the service.

Fig. 8-44: Pop-up menu of the SFC editor

8.7 Block Commands, Sequential Function Chart

So far, block commands have not been realized in the sequential function
chart.

WinPCL 06VRS SFC Editor 8-33

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

8.8 Search and Replace, Sequential Function Chart

The search function is in the first version and provides the features of a
text editor:

sfc_suchen.bmp

Fig. 8-45: Search in the SFC editor

The replace function is in preparation.

8-34 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

8.9 Cross Reference List, Sequential Function Chart

In contrast to the cross references of the pop-pup menu, the overview
you obtained via "View / Cross reference list" shows all variables. Only
variables from lines with a correct syntax can be resolved by their place of
use. However, all faulty names or names with double declaration are
displayed and can, thus, be reached with by double-clicking the mouse or
pressing the <Ctrl>+<Enter> keys.

sfc_qvl.bmp

Fig. 8-46: Excerpt from the cross reference list of a function block with SFC
elements

Name Type Area Use Comment

Flash TSTEP Steps Valid Step list

SFC sfc_1 Step Step in SFC sfc_1

Enable BOOL Declaration Valid Declaration of the
Boolean variables

SFC sfc_1 Boolean transition in
SFC sfc_1

TRANSITION continue Normally open contact in
network 1

Ladder diagram network

TRANSITION continue Negated reading of
network 1

IL network

Clock BOOL Declaration Valid Declaration of the
Boolean variables

Actions Valid Action list

STEP Flash Boolean action, non-
storing (N)

Action block in step
Flash

Count TACTION Actions Valid Action list

STEP Flash Action, once with step
activation (P1)

Action block in step
Flash

Fig. 8-47: Comment on cross reference list (shortened)

WinPCL 06VRS SFC Editor 8-35

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

8.10 Documentation, Sequential Function Chart

The SFCs are documented (print from the editor, <Ctrl>+<P>) using the
column width defined under Extras / Options / View / SFC.

optionen_ansicht_sfc.bmp

Fig. 8-48: Options, sequential function chart (SFC)

The "Apply" button activates the column width set for the SFC editor. The
width of the column can either be entered in the window shown above or
preset in the editor by dragging the headers.

SFC lists are documented using the settings defined in Extras / Options /
SFCL (SFC element lists).

optionen_ansicht_sfcl.bmp

Fig. 8-49: Options of the SFC element lists

The "Apply" button activates the column width set for the lists. The width
of the column can either be entered in the window shown above or preset
in the editor by dragging the headers.

The "Standard" button resets the default.

The "OK" button applies the setting and closes the dialog window.

The "Cancel" button closes the window; the previous values are kept.

Detailed information on the real print process and the features is to be
found in the main chapter on WinPCL.

8-36 SFC Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL 06VRS Action Block Editor 9-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

9 Action Block Editor

9.1 Action Blocks and Their Operating Principle

Zero, one or several actions (ACTION) arranged in action blocks
(ACTION BLOCK) can be connected to each step of a sequential
function chart (SFCs).

A step without actions results in waiting for fulfillment of the following
transition condition.

An action may include

• a Boolean variable,

• a negated Boolean variable,

• a sequence of instructions in IL or

• a number of networks in LD.

It is possible to make single or multiple use of an action in only one SFC.

However, the action can also be unused and "in reserve".

A zero-use action is present if an action block in a step is deleted but its
declaration is to be preserved or if a step is deleted and deletion of the
action blocks pertaining thereto is cancelled.

This action can be integrated in use again by entering its name in an action
block, without the details getting lost.

The SFC list gives an overview of the actions which are actually existing
in an SFC in the current program organization unit (see Actions in the
SFC List).

Function blocks with internal SFCs can be included in the IL or the LD
networks of an action.

A comment can be assigned to each action. This comment, like the
declaration comment of a variable, is bound to the name of the action and
is available at the place where the action is used.

The time period required for executing of the action is defined by the
action block.

9-2 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Structure of an Action Block
The action block editor, i.e. the basic editor, with four columns (see
figure), serves for entering or changing action blocks:

• Connection line: The connection line determines whether a comment
or an action block uses the line.0

• Action qualifier "AQ": defines the execution type for the action after the
step has become active.

• Action time "Time": Some action qualifiers have to be supplemented by
this time. A constant or a variable of type TIME can be used as action
time.

• Action name "Name": The ‘action name' field can contain the name of
a complex action - instruction list or LD networks. Alternatively, the
name of a true or negated Boolean variable can be entered as an
absolute or a symbolic value. For a clear overview, these Boolean
variables are marked with "B" or "/B". An empty action, which means
that it is not filled in yet, shows a white background, a filled-in action a
gray background.

AB_Möglichkeiten.bmp

(1): New empty line; decision by footer commands whether an
action block 1-AB or a comment 9- (* is to be entered.

(2): One-line comment, can be used as often as required
(3): Empty line
(5): Action has already been filled in with IL lines or LD networks.
(6): Action is still empty but the name is not the name of a Boolean

variable.
(8): Boolean variable is controlled, here symbolic name.
(9) Negated Boolean variable, here absolutely addressed flag.
(11): Action time is defined by the time constant "T#...".
(12): Action time is defined by a variable of type TIME.

Fig. 9-1: Possibilities in the action block editor

WinPCL 06VRS Action Block Editor 9-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Time period in Time constants for the action time

ms
s
m
h
d
Mixed

Milliseconds
Seconds
Minutes
Hours
Days

T#14ms,
T#14s,
T#47m,
T#147h,
T#14d,
T#25h15s, T#1h3.3s

Fig. 9-2: Example for action times (time constants)

Note: If a variable of type "TIME" is used as action time, this variable
can be updated only before the execution starts.

9.2 Action Block Editing

The action block editor will be described by means of a simple example
illustrating the following steps: entry, placing action blocks before or
behind, deletion, action blocks.

You can move to the action block editor by positioning the cursor on the
required step in the SFC editor and

• pressing the <Ctrl>+<Enter> keys,

• double-clicking the step, or

• triggering the "Open" command in the pop-up menu which can be
opened by pressing <Shift>+<F10> or the right mouse button.

It is also possible to move to the action block editor by using the "View /
SFCs" menu item or by double-clicking the mouse or pressing the
<Ctrl>+<Enter> keys with the cursor positioned on the desired step.

Entering an Action Block, Placing it Behind and Before
Entering an action block requires an empty line.

This empty line is either provided after branching or can be generated by
pressing the <Enter> key.

• Pressing the <Enter> key in the extreme left column generates a
preceding empty line.

• Pressing the <Enter> key at any other position, except as confirmation
of the entry, generates a following empty line.

nach und voran.bmp

(1): Placing before
(2), (3), (4): Placing behind

Fig. 9-3: Positions for placing the line before and behind

The action block is entered in an empty line with the footer:

• 1 - AB: draws the basic body of an action block,

• 9 - (*: allows the entry of a single-line comment.

9-4 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The input of an action block becomes through following list boxes, that
about footer commands <ALT>+ are attainable number key, supports:

Key combinations Name Column Remark

<ALT>+<5> AQ AQ Selection Window, Action Qualifier

<ALT>+<6> Time Time Selection Window, Time Variables

<ALT>+<7> Name Name Selection Window, Actions / Boolean Variable

Selection Window, Action Qualifiers
The footer command "<Alt>+<5>-AQ" opens the selection window for
action qualifiers. They can be represented by a list (space saving) or
detail information.

If the option "Preview" is selected, a graphic representation of the step
flag / action flag / postprocessing flag appears.

Auswahl_BZ.bmp

Fig. 9-4: Selection window, action qualifiers

The name of the desired action qualifier can be entered in the input field.
While entering letter by letter of the name the cursor in the selection
window jumps to the respective item with the corresponding initial letters.

WinPCL 06VRS Action Block Editor 9-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Time Variables
The footer command "<Alt>+<6>" opens the selection window for time
variables. They can be represented by a list (space saving) or detail
information.

If the option "Preview" is selected, a graphic representation of the time
variable including its comment appears.

In addition to the name of the time variable, its declaration comment is
displayed.

Multi-element variables (instances of structures, ARRAYs or FBs) are
marked by a preceded gray arrow. You can open this variables by double-
clicking or pressing <Enter> on the respective variable. The elements can
be (recursively) selected.

In future, a switch for the return path upwards to the instance name is
planned.

Auswahl_Time.bmp

Fig. 9-5: Selection window, time variables

The name of the desired time variable can be entered in the input field.
While entering letter by letter of the name the cursor in the selection
window jumps to the respective item with the corresponding initial letters.

9-6 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Actions / Boolean Variables
The footer command "<Alt>+<7>-Name" opens the selection window for
time variables. They can be represented by a list (space saving) or detail
information.

If the option "Preview" is selected, a graphic representation of the action /
Boolean variable including its comment appears.

In addition to the name of the actions / Boolean variables their declaration
comment is displayed.

Auswahl_Aktion.bmp

Fig. 9-6: Selection window, actions / Boolean variables

The name of the desired time action / Boolean variable can be entered in
the input field. While entering letter by letter of the name the cursor in the
selection window jumps to the respective item with the corresponding
initial letters.

Furthermore, the following subsets can be selected:

• All suitable actions (control, whether type fitting the step)

• All suizable actions and Boolean variables

• All Boolean variables

The items can be displayed as list or detailed representation.

WinPCL 06VRS Action Block Editor 9-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Selection Window, Absolute Addressed Variables
When entering an absolute address – e.g. %I1.1.2 – WinPCL verifies, if a
name, that is linked with the address via a declaration exists in the validity
area of the file. If a name is found, it is indicated in the selection window.

When confirming the element obtains this name, when rejecting the
absolute address remains at the element.

The window is used in the action block editor to enter an action name.

Auswahlfenster_Abs_Var_singl.bmp

Fig. 9-7: Window to select the absolute address

9-8 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Editing Features, Varying Color in the Action Block Editor
The basic colors of a correct action block are a dark-blue font on a gray or
white background. If an action block is not filled in completely or correctly,
the color of the marginal marking or of one of the fields changes to red.
The following figure shows some of the error situations:

AB_Fehler.bmp

(1): Action block is still empty
(2): Correct action qualifier, time and action name are missing
(3): Correct action qualifier, time is faulty (wrong type)
(4): Action name or variable name is missing
(5): Action qualifier is missing
(6): Incorrect name because of "["
(7): Error inside the action, is handed to the top

Fig. 9-8: Incorrect action blocks

Deletion of an Action Block
The respective action block, the comment included therein and the empty
line can be deleted by pressing the key on the left connection line.
The deletion positions were subsequently marked in yellow.

Löschen AB.bmp

Fig. 9-9: Positions for deleting action blocks and comments

WinPCL 06VRS Action Block Editor 9-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Before an action block with ladder diagram networks or IL lines is
definitively deleted, the following warning is displayed:

Löschen AB_01.bmp

Yes Deletion of the action block and deletion of the action "aName"
No Deletion of the action block, the action "aName" is still present

in the SFC list under "not used".
Cancel: The deletion process is canceled, the action block is preserved

Fig. 9-10: Warning displayed before deletion of an action block

The element to be deleted is in a red box.

Text Modifications in an Action Block
If corrections are necessary, the cursor has to be positioned to the
desired position in the respective line.

If you start writing immediately, the new text completely replaces the
previous text.

The previous text can be edited if you press ’0’-Edit before you start with
the text entry.

Note: A new, empty action is created when you change the name of
an action.

Multiple Use of Actions
An action can be used in several action blocks, if necessary with different
action qualifiers, in several steps. However, these steps must also be
used in the same SFC.

The following footer commands can be applied to actions with double or
multiple use:

Footer commands

<0>-Edit

With entry of the new name, a new independent action is created. The
system asks the user whether he also wants to delete the declaration of
the action entered up to that point after the last use.

When the name of an already existing action is entered, this action
becomes effective including its content.

(For further activities, see Actions in the SFC List)

9-10 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Detail Level of the Action Block Editor
For being complete , the actions included in the action blocks have to be
filled in. This does not apply to Boolean actions.

1. Position the cursor on the desired action block.

2. Press <Ctrl>+<Enter> or double-click the mouse.

Actions in the SFC List
In the sequence (SFC) of a function block or a program, it is possible to
make zero, single or multiple use of actions . The necessary overview is
provided by a list showing how the actions are assigned to the steps of
the SFCs. This list can be opened using the "View / SFCs" menu item.

Note: It is possible to make single or multiple use of an action in an
SFC.

In a POU, it is possible to make zero use of an action.

The use of an action in several SFCs of the POU is not
permitted.

AblaufListe_03.bmp

Action "ab1" used at least once in a step of sfc_1.
Action "ab" not used in sfc_1, either not assigned to a step or pertaining to

step "Setup" which is not used either.
Fig. 9-11: Actions in the SFC list

WinPCL 06VRS Action Block Editor 9-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The SFC list allows the following activities:

• Unused actions can be deleted by pressing the key.

• Actions can be provided with comments.

• Double-clicking the mouse or pressing the <Ctrl>+<Enter> keys with
the cursor positioned on an action name permits branching into the
action.

• Actions can be renamed, i.e. their name is updated at the places
where they are used (editing the name).

• Actions can be doubled; original and copy have the same
contents; the copy is "not used".

• Actions are executed in the order they are listed in the SFC list. The
starting order can be seen from the SFC graphic. The order can be
modified by means of the and keys. The order can be
rearranged according to the starting order by means of the key.

System Data for Actions and Action Blocks
Similar to steps, transitions and the SFC itself, additional variables can
be assigned to the actions:

Name Type Comment

action_name.Q BOOL Indicates whether the action is being executed.

action_name.A BOOL Indicates whether the action is being executed,
postprocessed or forced (all execution methods).

action_name.F BOOL Is the variable by which the action can be forced
and which indicates at the same time whether the
action is being forced.

action_name.JOG BOOL Only important in automatic jog mode; indicates
that the following transition is fulfilled.

Fig. 9-12: Variables which are assigned to an action with _tACTION

These structure elements are not available for Boolean actions and
negated Boolean actions.

9-12 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

General Method of Action Execution
Chronological coordination of action execution

Execution of the actions is firmly bound to the graphic structure of the
SFC. Each step of the SFC forms a complex functionality which is
assigned to a real process. For that reason, the actions must be executed
as specified by the steps. The structure interpreter realizes the following
execution features.

• Run through the steps of the SFC takes place line by line from left to
right and top to bottom.

• The action blocks are executed in the order defined by the order of the
steps, i.e. from left to right and from top to bottom (see Actions in the
SFC List).

• If an action is used several times, its classification is done as early as
possible.

• Multiple use is not possible (see Execution by Action_Control).

Chronological coordination of the action postprocessing

Postprocessing of all actions takes place in alternation with the
ActionControl outputs Q and A.

Since actions must be postprocessed only once, this is achieved
independently of the graphic structure of the SFC. The actions are
postprocessed according to their order in the action list.

Examples will be described in the following sections:

Definition of the instant ‘Step is active’

If the condition of the transition ‘tOn’ is fulfilled, the step is evaluated as
being active in the same PLC cycle upon calculation of the action.

Sequence.bmp

Fig. 9-13: Step becomes active

Definition of the instant ‘Step is inactive’

If the condition of the transition "tOff" is fulfilled, the step is evaluated as
being inactive in the same PLC cycle upon calculation of the action.

A step becoming inactive causes the Boolean variables and the negated
variables to be still calculated in the same PLC cycle, as indicated above.

WinPCL 06VRS Action Block Editor 9-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Consequences from postprocessing - example

postprocessing.bmp

Fig. 9-14: Consequences from postprocessing

The assignment of the variables xxx.Q and xxx.A shows whether normal
execution (xxx.Q / xxx.A: TRUE / TRUE) or already postprocessing
(xxx.Q / xxx.A: FALSE / TRUE) is running.

In this example this means, that relay Q1 is switched by the normally
open contact I1 while step sStep is active.

Postprocessing takes place after sStep has become inactive (sStep.X : =
FALSE). Relay Q1 is deactivated independently of the normally open
contact I1.

If postprocessing is to be prevented, the action can be skipped by means
of the combination (xxx.Q / xxx.A: FALSE / TRUE).

9-14 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Execution by Action_Control
The IEC-61131-3 uses the Action_Control model for defining the
execution rules for actions of an SFC. This model assumes that for each
action of a POU an instance of the function block Action_Control, defined
by the standard, exists.

acontrl.bmp

Fig. 9-15: Action control according to EN 61131-3

This function block shows the execution of the related action by its
outputs Action_Control.Q or Action_Control.A as follows (forcing of
actions not included).

• The input connection of the Action_Control function block is
established by the action blocks which are connected to the steps. A
connection between a step and an input of an instance of the function
block Action_Control exists if an action block of this step references
the same action, which is assigned to the function block instance
Action_Control.

• Dependent on the step activity such a connection can be active or
inactive.

WinPCL 06VRS Action Block Editor 9-15

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• An input of a function block instance Action_Control is to be
considered as connected to TRUE if there is at least one active
connection to a step. Otherwise the input is considered to be
connected to FALSE.

Action Qualifiers and their Execution
The following qualifiers and action times are supported:

Action
qualifier

Action time
required

Comment

N
R
S
L
D
P
P0
P1
SD
DS
SL

No
No
No
Yes
Yes
No
No
No
Yes
Yes
Yes

Non-storing
Dominating reset
Storing
Non-storing, limited in time
Non-storing, delayed in time
Pulse + postprocessing (2 PCL cycles)
(Post) processing with falling edge 1x
(Post) processing with rising edge 1x
Storing, delayed in time
Delayed in time, storing
Storing, limited in time

This section deals with the specific reactions for all action qualifiers in
relation to the step being active. The execution of a Boolean variable, a
negated Boolean variable and a complex action will be studied.

N
Non-storing.

Execution is running as long as the ‘step’ is active.

N_AQ.bmp

X: Step is active
Q: Action flag
A: Postprocessing flag

Fig. 9-16: Time diagram for action qualifier "N"

Boolean variable Negated Boolean variable Complex action

??? It is not possible to make a statement on execution.

TRUE TRUE FALSE Execution / postprocessing

FALSE FALSE TRUE No execution

The action flag is followed by a Boolean variable. The variable becomes
‘0’ in the same PLC cycle after the step has become inactive..

The action flag is followed by an inverted negated Boolean variable. The
variable becomes ‘1’ in the same PLC cycle after the step has become
inactive.

A complex action is executed and postprocessed according to the action
flag.

9-16 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

S
Storing.

Execution starts when the step becomes active until the reset command
is given.

S_AQ.bmp

X: Step is active
Q: Action flag
A: Postprocessing flag

Fig. 9-17: Time diagram for action qualifier "S"

Boolean variable Negated Boolean variable Complex action

??? It is not possible to make a statement on execution.

TRUE TRUE FALSE Execution / postprocessing

FALSE FALSE TRUE No execution

The action flag is followed by a Boolean variable. The variable becomes
‘0’ in the same PLC cycle after the step has become inactive.

The action flag is followed by an inverted negated Boolean variable. The
variable becomes ‘1’ in the same PLC cycle after the step has become
inactive.

A complex action is executed and postprocessed according to the action
flag.

WinPCL 06VRS Action Block Editor 9-17

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

L
Non-storing, limited in time.

Execution is restricted to the defined duration. It is running as long as
‘Step’ is active and not any longer.

L_AQ.bmp

T1: Time < active time of the step
T2: Time > active time of the step
X: Step is active
Q: Action flag
A: Postprocessing flag

Fig. 9-18: Time diagram for action qualifier "L"

Boolean variable Negated Boolean variable Complex action

??? It is not possible to make a statement on execution.

TRUE TRUE FALSE Execution / postprocessing

FALSE FALSE TRUE No execution

The action flag is followed by a Boolean variable. The variable becomes
‘0’ in the same PLC cycle after the step has become inactive.

The action flag is followed by an inverted negated Boolean variable. The
variable becomes ‘1’ in the same PLC cycle after the step has become
inactive.

A complex action is executed and postprocessed according to the action
flag.

9-18 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

D
Non-storing, delayed in time.

Execution starts with a time delay and runs as long as the step is active.
No processing takes place if the step has become inactive before the time
has elapsed.

D_AQ.bmp

T1: Time < active time of the step
T2: Time > active time of the step
X: Step is active
Q: Action flag
A: Postprocessing flag

Fig. 9-19: Time diagram for action qualifier "D"

Boolean variable Negated Boolean variable Complex action

??? It is not possible to make a statement on execution.

TRUE TRUE FALSE Execution / postprocessing

FALSE FALSE TRUE No execution

The action flag is followed by a Boolean variable. The variable becomes
‘0’ in the same PLC cycle after the step has become inactive.

The action flag is followed by an inverted negated Boolean variable. The
variable becomes ‘1’ in the same PLC cycle after the step has become
inactive.

A complex action is executed and postprocessed according to the action
flag.

WinPCL 06VRS Action Block Editor 9-19

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

P
Pulse, extended by P0 / P1.

Execution is running only as long as an PLC cycle takes.

• An action with P action qualifier is executed and postprocessed as
shown in the following figure.

• An action with P0 or P1 action qualifier, however, is only
postprocessed.

p_p1_p0.bmp

X: Step is active
Q: Action flag
A: Postprocessing flag

Fig. 9-20: Time diagrams for action qualifiers "P", "P1" and "P0"

Boolean variable Negated Boolean variable Complex action

??? It is not possible to make a statement on execution.

TRUE TRUE FALSE Execution / postprocessing

FALSE FALSE TRUE No execution

The action flag is followed by a Boolean variable. The variable becomes
‘0’ in the same PLC cycle after the step has become inactive.

The action flag is followed by an inverted negated Boolean variable. The
variable becomes ‘1’ in the same PLC cycle after the step has become
inactive.

A complex action is executed and postprocessed according to the action
flag.

9-20 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

DS
Delayed and storing.

Start of execution is delayed by the time specified. However, execution
must start before the step becomes inactive. Execution must be
completed with the reset command.

DS_AQ.bmp

T1: Time < active time of the step
T2: Time > active time of the step
X: Step is active
Q: Action flag
A: Postprocessing flag

Fig. 9-21: Time diagram for action qualifier "DS"

Boolean variable Negated Boolean variable Complex action

??? It is not possible to make a statement on execution.

TRUE TRUE FALSE Execution / postprocessing

FALSE FALSE TRUE No execution

The action flag is followed by a Boolean variable. The variable becomes
‘0’ in the same PLC cycle after the step has become inactive.

The action flag is followed by an inverted negated Boolean variable. The
variable becomes ‘1’ in the same PLC cycle after the step has become
inactive.

A complex action is executed and postprocessed according to the action
flag.

WinPCL 06VRS Action Block Editor 9-21

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

SD
Stored and delayed.

The order for execution is stored. The actual start of execution, however,
is delayed by the time specified. Execution must be completed with the
reset command.

Note: Execution of the action may begin after the triggering step has
become inactive.

SD_AQ.bmp

T1: Time < active time of the step
T2: Time > active time of the step
X: Step is active
Q: Action flag
A: Postprocessing flag

Fig. 9-22: Time diagram for action qualifier "SD"

Boolean variable Negated Boolean variable Complex action

??? It is not possible to make a statement on execution.

TRUE TRUE FALSE Execution / postprocessing

FALSE FALSE TRUE No execution

The action flag is followed by a Boolean variable. The variable becomes
‘0’ in the same PLC cycle after the step has become inactive.

The action flag is followed by an inverted negated Boolean variable. The
variable becomes ‘1’ in the same PLC cycle after the step has become
inactive.

A complex action is processed and post-processed according to the
action flag.

9-22 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

SL
Stored with time limit.

The order for execution is stored. Execution starts immediately and is
completed after the time specified.

Note: Before being re-activated, an action, even if completed, must
be reset by an R-command (also see Execution by
Action_Control).

SL_AQ.bmp

T1: Time < active time of the step
T2: Time > active time of the step
X: Step is active
Q: Action flag
A: Postprocessing flag

Fig. 9-23: Time diagram for action qualifier "SL"

Boolean variable Negated Boolean variable Complex action

??? It is not possible to make a statement on execution.

TRUE TRUE FALSE Execution / postprocessing

FALSE FALSE TRUE No execution

The action flag is followed by a Boolean variable. The variable becomes
‘0’ in the same PLC cycle after the step has become inactive.

The action flag is followed by an inverted negated Boolean variable. The
variable becomes ‘1’ in the same PLC cycle after the step has become
inactive.

A complex action is processed and post-processed according to the
action flag.

WinPCL 06VRS Action Block Editor 9-23

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

R
Reset

The action qualifier ’R’ is special in that it becomes effective only if an
action is being executed, i.e. included in the list of actions to be executed.
The action qualifier ’R’ remains ineffective if it is used by mistake without
an action or variable being entered in the list for execution.

The further description assumes that the same action or variable, triggered
by an action qualifier "S", "SD", "DS" or "SL" has been transmitted for
execution.

Boolean variable

The variable was logic ’1’ and will be logic ’0’.

Negated Boolean variable

The variable was logic ’0’ and will be logic ’1’.

Complex action

The action will be postprocessed.

Note: Action qualifier "SL".

Before being re-activated, an action, even if completed, must
be reset by an R-command (also see Execution by
Action_Control).

Actions with Function Blocks which Contain SFC
Structures
Complex actions can contain instruction lists or LD networks in which
function blocks with SFC structures are to be executed. With fulfilled
transition, the execution of such a function block allows the start of the
SFC within the function block.

The function block and, thus, its SFC is no longer processed if the action
is deactivated. They retain their current values, the SFC retains its current
state. Execution of the SFC is continued where it was interrupted, if the
function block is executed again at a later point.

If, however, the action which includes the function block with SFC
structure is called up with the action qualifier "R", execution is not
continued. The SFC structure and the function block with SFC structures
called up by this structure are reset.

9-24 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

9.3 Setup Support on Action Block Level

Forcing of Actions with System Support
Forcing of actions is only possible in the manual mode and only for
actions which are called up by at least one step. Boolean and negated
Boolean actions are not supported.

Actions which are not used by the SFC (see Actions in the SFC List) do
not reside in the control after having been downloaded and can, thus, not
be forced.

Forcing of actions means that execution of an action can be initialized
independently of output Q of its Action_Control component and, thus,
independently of the condition of the steps of the POU.

Interplay of the system variables for actions when forcing an action
with xxx.F

Systemvar_Aktion.bmp

Fig. 9-24: System variables when action xxx is forced

The following table contains all permitted assignments of system
variables of action "xxx":

xxx.Q xxx.A xxx.F Comment

FALSE FALSE FALSE No action execution

FALSE TRUE FALSE Action postprocessing

FALSE TRUE TRUE Action execution

TRUE TRUE FALSE Action execution

TRUE TRUE TRUE Action execution

Fig. 9-25: Assignment of system variables of action xxx

By evaluating these flags, each named action can realize a
postprocessing identification.

WinPCL 06VRS Action Block Editor 9-25

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Steps for initializing the forcing of "sfc1"

• Starting point is the status of "sfc1" shown in the figure below.

AB Betriebsart_00.bmp

Fig. 9-26: "sfc1" with active step "s2A" and action blocks

• Switch over from automatic mode to manual mode. Each SFC has a
number of variables which are created by typifying with "1-Basis" or "3-
Indra-Step" in the "View / SFCs" menu item. The variable
"sfc1.intern.SET_HAND" must be set to TRUE. This is done using the
"Start / Status ARRAYS / Structures" menu item and selecting the
structure "sfc1", to the right in the figure below.

AB Betriebsart_01.bmp

Fig. 9-27: Change over to manual mode for "sfc1"

• Position the cursor on the variable "SET_HAND", click the right mouse
button or press <Shift>+<F10> and replace the value FALSE
(automatic mode) by TRUE (manual mode). It is characteristic of the
manual mode that all steps are deactivated. Switchover from AUTO to
MANUAL causes a reset of all actions referenced by the SFC.

9-26 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• The action "aName3" is to be activated. To achieve this, call up the
"Start / Status ARRAYS / Structures" menu item and select the
structure pertaining to the action "aName3".

AB Betriebsart_02.bmp

Fig. 9-28: Action "aName3" is forced

Note: The value of the variable aName3.F (force flag) is preserved
during the next phase of the automatic mode. The action is
forced again if the control returns to the manual mode.

• To return to the automatic mode, the variable
"sfc1.intern.SET_HAND" must be set to FALSE again. This is done
using the "Start / ARRAYS / Structures" menu item and selecting the
structure "sfc1".

Note: If the active steps were not changed those steps which were
active before the manual mode become active again .

WinPCL 06VRS Action Block Editor 9-27

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Status Display in the Action Block Editor
If a program resides in the control system for execution, the following
status information can be displayed in the action block editor:

• Blue power rail in the left margin, position in yellow, step is active

• Colored bit variables are logic "1"

• Colored negated bit variables are logic "0"

• If colored, more complex actions are postprocessed

• For time-forced actions, the currently running time is displayed above
the entered time

AB status.bmp

Top window: SFC level, step s2A active, step 2B inactive
Central window: Actions are activated, time is running
Bottom window: No activation, actions are activated by external steps

Fig. 9-29: Status display in the action block editor

Further ways to obtain status information are:

• Start / Force <Shift>+<F8> for elementary variables
(ANY_ELEMENTARY)

• Start / Status ARRAYs / Structures <Shift>+<F3>

9-28 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

9.4 Options, Action Block Editor

The options relevant for the action block editor can be selected by means
of the "Extras / Options" menu item:

Group Option Meaning

Desktop Restore size and position during startup The desktop is restored in the same size and position.

Restore MDI window during startup MDI windows are opened in the same order when
restarting the system.

Create backup copy Automatic storage of the source condition which was
loaded into the control in "downloaded files".

Auto save Allows the automatic saving of the current file in
presettable time intervals without any prompt.

Sound Activation or deactivation of a beep sound.

View / All Apply declaration comment in
implementation

Comments, that have been entered in the respective
declaration line are displayed in the implementation. The
implementation can be changed; the comment is then
doubled, the declaration line remains unaffected.

Variable display With symbols (name) or absolute (address).

Display of absolute variables The user can select from I/Q, E/A and I/O for absolute
addresses.

Truncating very long texts Texts and numbers can be truncated to the right or left,
and

Truncating very long numbers can be represented with or without "..." marking.

View / AB Column width for the individual columns First 10

(with standard values) AQ 30

Time 80

Name 120

Last 250

Fig. 9-30: Action block editor options

WinPCL 06VRS Action Block Editor 9-29

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

9.5 Pop-up Menu, Action Block Editor <Shift>+<F10>

This pop-up menu contains the essential commands for this editor. It can
be opened by pressing the right mouse button or the <Shift>+<F10> keys.

Menu items Explanation

Open Branch to an action, also <Ctrl>+<Enter>

Edit comment Input of a comment on an action.

Delete Deletion of the current action block.

Import implementation The ASCII file chosen from the "WinPCL text files" is loaded into the action block editor.

Export action The current action block is exported as an ASCII file and stored in the folder "WinPCL text
files".

Export AB of the step The current action blocks of the step are exported as an ASCII file and stored in the folder
"WinPCL text files".

Syntax text List of all errors in the current editor. You can move to the place where the error occurred
by double-clicking the mouse or by pressing the <Ctrl>+<Enter> keys.

Error help The line, where the cursor is positioned, is tested for correct syntax. If an error is detected,
this error is explained, also possible with <Ctrl>+<F1>.

Declaration help Description of the properties of the current action block.

Cross reference help List of all places of use.
The place of use can be reached by double-clicking the mouse or pressing the
<Ctrl>+<Enter> keys.

Force Allows the entry of a variable name. The value of the variables is indicated and
can be forced once. The window remains open and the process can be activated again.
Forcing takes place between the update of the input variables and the start of the program
code execution.

Status ARRAYs /
Structures

Status display for the elements of an array or a structure.
Selection is done through a tree structure till the specific element is reached.

Print current window Prints the editor contents.

Options Toggles the absolute address and the name of the variable.

Internals Search for faults in the programming system, to be used only if approved by the service.

Fig. 9-31: Pop-up menu of the action block editor

9.6 Block Commands, Action Blocks

Not implemented yet.

9-30 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

9.7 Search and Replace, Action Block Editor

The search function is in the first version and provides the features of a
text editor:

AB_Suchen.bmp

Fig. 9-32: Search function in the action block editor

The replace function is in preparation.

WinPCL 06VRS Action Block Editor 9-31

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

9.8 Cross Reference List, Action Block Editor

In contrast to the cross references of the pop-up menu, the overview
obtained by means of "View / Cross reference list" shows all variables. Of
course, only variables from lines with the correct syntax can be resolved
by their place of use. All faulty names or names with double declaration
are displayed and can, thus, be reached by double-clicking the mouse or
by pressing the <Ctrl>+<Enter> keys.

ab_qvl.bmp

Fig. 9-33: Cross reference list of a function block with SFC element (excerpt)

Name Type Area Use Comment

Flash tSTEP Steps Valid Step list

SFC sfc_1 Step Step in SFC sfc_1

Enable BOOL Declaration Valid Declaration of the Boolean
variables

SFC sfc_1 Boolean transition in SFC sfc_1

TRANSITION continue Normally open contact in network 1 Ladder diagram network

TRANSITION continue Negated reading of network 1 IL network

Clock BOOL Declaration Valid Declaration of the Boolean
variables

Actions Valid Action list

STEP Flash Boolean action, non-storing (N) Action block in step Flash

Count tACTION Actions Valid Action list

STEP Flash Action, once with step activation (P1) Action block in step Flash

Fig. 9-34: Comment on cross reference list (shortened)

9-32 Action Block Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

9.9 Documentation, Action Block Editor

The SFCs are documented (print from the editor, <Ctrl>+<P>) using the
column width defined under Extras / Options / View / AB.

optionen_ansicht_ab.bmp

Fig. 9-35: Action block (AB) options

The "Apply" button activates the column width set for the SFC editor. The
width of the column can either be entered in the window shown above or
preset in the editor by dragging the headers.

The "Standard" button resets the default.

The "OK" button applies the setting and closes the dialog window.

The "Cancel" button closes the window; the previous values are kept.

Detailed information on the real print process and the features is to be
found in the main chapter on WinPCL.

WinPCL 06VRS I/O Editor 10-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

10 I/O Editor

10.1 General Notes on the I/O Editor

The task of the connections to programmable logical controllers is the
transfer of information to the PLC for processing.

The connections do not only differ by their physical facts, but also by
transmission protocols, smallest transferable data volume and other facts.
By this way the whole efficiency of an interface connection can only be
realized with the configurator that matches this connection, e.g.:

• INTERBUS: IBS CMD G4

• PROFIBUS: FIOCON

The programming system has solely the responsibility and possibility to
allow an access to the information that comes from this interface
connection via a page frame.

An example for the consequent work

 IBS CMD G4 -> I/O editor -> Declaration resource

is to be found in the chapter "Function blocks / Firmware function blocks /
Preparation for control of an INTERBUS".

Note: New in version 4VRS: generating and condensing gaps for
inserting and removing bus units (to be opened using the
Pop-up Menu, I/O Editor <Shift>+<F10>).

10.2 Structure of an I/O Editor

I/O Table
The basic element of the I/O editor is shown in the figure below:

IO_Edit_01.bmp

Interface connection 1: INTERBUS
Interface connection 2: RECO I/O

Fig. 10-1: Display table of the I/O editor

10-2 I/O Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Interface connection
The information between interface connection and control is transmitted
by means of a memory area which is divided in two, the area of the inputs
and the outputs (see left side of the table in the figure above).

It is further necessary to indicate the start position of the information and
its length.

1. 1st line:

Connection: INTERBUS, 4-byte input module

Area of inputs (%I),

Start position 0.0 (byte 0, bit 0)

Length 4.0 (4 bytes, 0 bits)

2. 2nd line:

Connection: INTERBUS, 4-byte output module

Area of inputs (%Q),

Start position 0.0 (byte 0, bit 0)

Length 4.0 (4 bytes, 0 bits)

3. 3rd line:

Connection: RECO-I/O, 4-byte input module

Area of inputs (%I),

Start position 4.0 (byte 4, bit 0)

Length 4.0 (4 bytes, 0 bits)

Note: Depending on the interface connection, the start position contains
the input user information starting with the forth byte, since the bytes 0-3
contain diagnosis information.

4. 4th line:

Connection: RECO-I/O, 4-byte output module

Area of outputs (%Q),

Start position 0.0 (byte 0, bit 0)

Length 4.0 (4 bytes, 0 bits)

The subdivision into bytes and bit allows the usage of bit modules, in
packed form as well as starting at the byte limit and leaving the remaining
part free. If bit modules in packed form are used, the start position then is
on any bit number, the next bit module follows in the memory
immediately.

Note: The user is responsible for the correct entry on the left side.
There is no check that the interface connection is really
available!

WinPCL 06VRS I/O Editor 10-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Assignment of the logical addresses
Any number between 1 and 999 can be set for logical numbers. In other
words, the user can establish the groups for his interface connections or
the like by himself (see right side of the table in figure 8-1).

Furthermore the user can also define any start address "from" byte (.bit),
normally "0.0". In this manner, the user can have the user inputs start with
0.0, as shown in line 3 of the figure above, although they start with byte 4
in the memory of the interface connection.

The end address "to" is calculated automatically.

Structure of the Input Mask in the I/O Editor
If a new line is to be entered in the I/O table or an existing line is to be
changed, the input mask for changing the current line or for entering a
new line is activated either with the footer command 8 Ins (<Ins> key) or
with 0-edit.

When you fill in the mask, the input is checked for being complete.
Overlapping numbers or coinciding access to storage locations of the
interface connections are detected and denied.

IO_edit_Eingabemaske.bmp

Fig. 10-2: Input mask of the I/O editor

10-4 I/O Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Below follows an overview of possible interface connections (The control
type set in the system configurator determines the connections
respectively approved for selection).

Interface connection %I / %Q Comment

M keys %I Lateral keys on BTV20, BTV15 screens

PLC keys % and %Q Backlit keys on the TBV20, incl. key switch

BT bus or
INTERBUS/M

%I and %Q Connection of up to four operator terminals, BRA20, BTM15, etc.

MTC200 %I and %Q Interface to processes and axes of the CNC control, as seen from the
PLC

INTERBUS/M or
PROFIBUS DP/M or
DeviceNet/M

%I and %Q • I/O modules in switch cabinet design, e.g. RECO Inline
modules

• I/Os in the peripheral equipment, e.g. SM modules in IP65
design

RECO-I/O %I and %Q Direct I/O modules on RECO controls (mostly not in connection with
INTERBUS or PROFIBUS field bus)

INTERBUS/M or
PROFIBUS DP/S

%I and %Q • PLC interface to other MTC200, ISP200 units in the machine
(transfer concept), e.g. via RMG gateway modules

• PLC interface to third-party PLCs, e.g. via RMG gateway
modules

WinPCL 06VRS I/O Editor 10-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Check for Use of the I/O Areas in Resource and Programs
Press the <Shift>+<F10> keys or click the right mouse button to activate
the pop-up menu shown below. A third part of the table can be faded in
with the "Options / Use RE / PR" menu item.

IO Verwendung RePr.bmp

Fig. 10-3: Check of I/O use

It is checked here whether the I/Os required in the resource or in the
programs match the declared I/Os.

• Line 1: The offered inputs are not required.

• Line 2: Is highlighted in gray, the following is required for the
resource RES_IO_TEST, 4-byte inputs, from %I2.4

This is obviously an incorrect declaration.

Either go to line 1, press the 0-edit button, keep the log. no. and change
the start address "from" from 0.0 to 4.0.

- or -

go into the declaration of RES_IO_TEST and change the addresses of
the corresponding variables.

Note: An I/O table should not contain gray-highlighted lines, as these
variables are not supplied by the interface connection. A flag
storage location is assigned instead!

10-6 I/O Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Logic Address Assignment by Example of a BT Bus
General notes on the BT bus
The BT bus can be used to connect up to four operator terminals of type
BTM15/16 or BTA20.

The address assignments required for programming can be found in the
documents accompanying of the devices to be connected.

Device type Storage assignment in the input / output core image

BTM15 Depending on the configuration:
2 bytes for digital I/Os (always assigned)
2 additional bytes for each module (except handwheel)
4 additional bytes for handwheel module

BTM16 14 bytes

BTM20 6 bytes

Fig. 10-4: Storage requirements of operating devices

Addressing
The BT bus is addressed by assigning a logic user number in the I/O
editor of the PLC programming interface. A separate logic address can be
assigned to each input core image storage as well as to each output core
image storage, but it is also possible to use the same address.

Each of the two core image storages has a size of 128 bytes, which are
available for the connected operating devices. The number of bytes
assigned in the core image storage depends on the operating device.

BT_mit_Adrs.bmp

Fig. 10-5: Devices in BT bus and addresses

WinPCL 06VRS I/O Editor 10-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

I/O table in the I/O editor
Addressing can be defined by the user himself, depending on the
requirement.

BT_IO_Ed.bmp

Fig. 10-6: Addresses in the I/O editor

A common logic number was assigned for the BTA20. The inputs and
outputs of this device were concentrated in one memory area.

For the BTM15, a logic address was assigned to each module, with this
address being assigned jointly to the inputs and outputs of the module.

For the BTM16, the inputs and outputs of the complete device were
grouped, but they were provided with different logical numbers.

10-8 I/O Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

10.3 Special Functions of the I/O Editor

Shifting I/O Addresses

Requirements for Shifting I/O Addresses
By defining the logic I/O devices, the directly represented variables (%I…,
%Q…) used in the user programs (resource and included programs) are
assigned to the addresses in the memory of the particular connection
(DPR).

Checks are carried out in the input dialog, to avoid overlapping, especially
of DPR addresses.

If, for example, physical addressing is used in the INTERBUS - i.e. the
memory address of a device is automatically generated from the latter’s
position in the bus -, the addresses of all following devices are shifted
when a device is inserted. Up to now, it was very difficult to adjust this
shifting of addresses in the I/O editor. Starting from the end (because
multiple assignment of addresses is not permitted by the check described
above), the addresses of all devices must be changed manually.

Note: If logic addressing is used in the INTERBUS, this functionality
is not required because the addresses of the inserted inputs
and outputs are defined by the user.

The functionality required is intended to support insertion and removal of
input and output areas in the DPR by the program, by shifting all following
addresses (of the same data direction - %I… / %Q…) accordingly. This is
achieved by the following operations:

• when a device is inserted or deleted,

• by a special call using the context-sensitive menu of the I/O editor.

Inserting / Deleting a Device
If a device is inserted at an address which is already occupied by an
already entered device, the user is requested whether he wishes to insert
the area with the data capacity specified and to shift all following
addresses of the same data direction. Analogously, the user when
deleting a device (or when altering the device data) is requested whether
he wishes to condense the now empty area again.

Since this functionality is required for specific I/O connections only, they
can be used to a very limited degree only. To this end, all connection
names (according to the names in the IO_Dev.ini file), for which this
functionality is to be used (the INTERBUS connections are already
entered as a default), must be entered in the options (Plc.ini).

At present, this setting cannot be altered within the WinPCL GUI.

When "Specials / Removing gaps in DPR" or "Specials / Inserting gaps in
DPR" is selected in the pop-up menu of the I/O editor, a dialog opens
which can be used to insert or remove separate areas within the already
defined I/O addresses.

WinPCL 06VRS I/O Editor 10-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

IO_Ed_spezial_0.bmp

Fig. 10-7: Pop-up menu call in the I/O editor

Removing gaps
The following input dialog permits removing of existing gaps in the DPR:

IO_Ed_spezial_1.bmp

Fig. 10-8: Removing gaps

Position Comment

Connection Combobox which can be used to select a connection from the
connections entered in the I/O editor (this selection is
independent of the options setting described above).

%I / %Q Data direction (input data / output data)

From start
pos.

Address of the gap in the DPR to be condensed or removed (the
starting addresses of all existing gaps are provided for selection)

For Size of the area to be removed

Apply The area selected is removed. Before the removal, the system
checks whether the area concerned does not exceed the gap to
be removed. The window is not closed; the dialog contents are
updated.

Close The dialog window is exited.

Fig. 10-9: Steps performed when gaps are removed

The "Apply" button is passive if no gap has been selected (or if there is no
gap in the selected data direction of the particular connection) or if the
value specified for the size of the area fails to be reasonable. The text
field for the size of the area to be deleted displays the range permitted for
this value.

10-10 I/O Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Inserting gaps
The following input dialog is provided for inserting gaps in the DPR:

IO_Ed_spezial_2.bmp

Fig. 10-10: Inserting gaps

Position Comment

Connection Combobox which can be used to select a connection from the
connections entered in the I/O editor (this selection is
independent of the options setting described above).

%I / %Q Data direction (input data / output data)

From start
pos.

Address in the DPR where the gap is to be inserted (the starting
addresses of all existing devices are provided for selection)

For Size of the area to be inserted

Apply The area selected is inserted. The window is not closed; the
dialog contents are updated.

Close The dialog window is exited.

Fig. 10-11: Steps performed when gaps are inserted

The "Apply" button is passive, if the value specified for the size of the area
fails to be reasonable.

Applying Configuration Data from CMD to the I/O Editor
As seen from WinPCL, the I/O peripherals are configured in two stages:

• Parameterization and configuration of the bus by means of an
appropriate configurator.

• Definition of the logic devices in the WinPCL I/O editor, for decoupling
the physical I/O devices from the absolute identifiers (%I… / %Q…)
used in the program.

The advantage of this decoupling is that, if the I/O peripherals are
modified / extended, they must, in general, only be adjusted within the
WinPCL I/O editor and not in all declaration parts of the programs.
However, the disadvantage is that all logic I/O users must be entered
manually and that, for the desired I/O connection, an appropriate address
must be assigned to them.

This disadvantage is eliminated by the present tool, which can be used to
read the data of the external configuration tool into WinPCL and to define
the logic I/O devices. As a result, manual entries are reduced to a high
degree.

Our specific case involves the configuration of the INTERBUS using the
"CMD" configuration tool by Phoenix Contact.

WinPCL 06VRS I/O Editor 10-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CMD Export Requirements for IBS Configuration Data
1. Within CMD, one of the functions permits export of the configuration

data in text format Í Parameterization memory - Pop-up menu \
Write ASCII File \ Project Data (*.csv). The projecting data are written
as a text file in the form of a table, the data elements of which are
separated by a semicolon.

2. The pop-up menus of the WinPCL I/O editor provide an import
function which can read and interpret the CSV file of the CMD tool.

3. The following methods for assigning the physical device data to the
logic devices are available:

• Segment-oriented assignment: Each segment (remote bus
terminal + local bus device) is comprised to a logic device. The
logic device number corresponds to the segment number. Since
each local bus device has the same segment number as the
pertaining bus terminal, the assignment is unique.

• Device-oriented assignment: Each device is accepted as a
separate logic device in the I/O database. The logic device number
consists of the segment number and the position within the
segment (segment number * 100 + position).
It is not reasonable to assign the logic device numbers completely
according to the arrangement of the devices in the INTERBUS,
because there is no fixed relation between the logic devices and
the physical I/O devices. When devices are added subsequently,
this would lead to an amount of modifications which is not
justifiable.

4. The combination formed by the entries of "Station name" / "Device
name" is used as comment in case of the device-oriented
assignment.

5. If the segment-oriented assignment is concerned, only the device
comment of the bus terminal can be taken into consideration.

10-12 I/O Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Activities in CMD
After CMD has been started, CMD reads the bus structure from the
control (cursor on the configuration frame, reading from the memory).
Thereafter, the project should be saved.

CMD_IO_ruecklesen_01.bmp

Fig. 10-12: Reading the bus structure from the control

It is now possible to write to the various devices.

To achieve this, the cursor must be positioned on the icon of the particular
device and the write window must be opened (pop-up menu, Description
<F9>).

Teilnehmerbeschr_02.bmp

Fig. 10-13: Writing to the device (here lower branch of bus terminal)

WinPCL 06VRS I/O Editor 10-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The window offers 2.0 as the device number.

The station name is assigned for the entire line (bus branch).

The device name is assigned to the device itself.

The following bus structure is achieved after updating.

Teilnehmer_mit_Beschr_03.bmp

Fig. 10-14: Bus structure after 4 devices have been written to.

The "Controller Board" icon can be used to open the process data display
(via pop-up menu).

Prozessdaten_04.bmp

Fig. 10-15: Process data display

This display shows the device numbers, the names and the type of the
connections (inputs = E / outputs = A).

10-14 I/O Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The project data are written as CSV file in the context-sensitive menu of
the parameterization memory (pop-up menu).

Ausschreiben_csv_05.bmp

Fig. 10-16: Writing the CSV file

The settings of the data contents of the CSV file and, in particular, the
options of the CSV file may not be changed. If some of the data are
omitted, it might be that the data cannot be applied.

Einstellung der CSV-Datei.bmp

Fig. 10-17: Setting of CSV files

WinPCL 06VRS I/O Editor 10-15

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CSV File, Data Format
The format of the CSV file is represented as Excel import (reduced) in the
figure below. Its evaluation is required only if there are difficulties in
applying the data.

exel_csv.bmp

Fig. 10-18: CSV file in Excel format (reduced)

Importing the CSV File in the I/O Editor
In the context-sensitive menu of the I/O editor, the "Import CMD" menu
item data must be called up.

cmd_import.bmp

Fig. 10-19: Calling up the CMD import in the pop-up menu of the I/O editor

10-16 I/O Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

After the CSV file exported in the CMD beforehand has been selected,
the selection of the assignment method is confirmed in a separate dialog.

Zuordnungsmode.bmp

Fig. 10-20: Assignment mode: physical devices, logic devices

Depending on the setting selected, the I/O tables are displayed in different
resources.

Res_segment_06.bmp

Fig. 10-21: Resource with I/O table with segment-oriented assignment

WinPCL 06VRS I/O Editor 10-17

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Each segment (remote bus terminal + local bus device) is comprised to a
logic device. The logic device number corresponds to the segment
number. Since each local bus device has the same segment number as
the pertaining bus terminal, the assignment is unique.

Res_teilnehmer_07.bmp

Fig. 10-22: Resource with I/O table with device-oriented assignment

Each device is accepted as a separate logic device in the I/O database.
The logic device number consists of the segment number and the position
within the segment (segment number * 100 + position).

It is not reasonable to assign the logic device numbers completely
according to the arrangement of the devices in the INTERBUS, because
there is no fixed relation between the logic devices and the physical I/O
devices. When devices are added subsequently, this would lead to an
amount of modifications which is not justifiable.

Note: If the I/O peripherals are modified or extended, e.g. by adding
additional I/O devices, the CSV file can be imported once
again. In this case, the old logic devices of the "INTERBUS/M"
connection contained in the I/O database of WinPCL are
deleted before the new data are read and after an appropriate
safety prompt has been answered.

10-18 I/O Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Restrictions to the Import of CMD Files
• In the settings defining the data to be written to the CSV file, the

standard settings may not be changed; it is mandatory to enter the
parameters mentioned above (device number, direction (I/O), PD
length, process data assignment). The options of the CSV file defining
the separator between the particular elements remain unchanged. The
heading line is mandatory.

• If inserted subsequently, additional modules must be inserted in
CMD manually, because the segments are re-numbered when the
configuration frame is automatically read from the connection, thus
causing the assignment to the logic device numbers getting lost in
WinPCL.

• Using the settings of the connection group in CMD, it is possible to
assign an address to the registers of the bus master (diagnosis and
standard function register) in the DPR. However, these data are not
contained in the CSV file. As a result, it is not possible to assign logic
devices to these data within WinPCL when the CMD data are
imported. For that reason, these "devices" must be entered manually.
That is the reason why it is not permitted to automatically delete all
INTERBUS devices from the WinPCL I/O editor during import. Only
existing devices are overwritten.

Restrictions to Segment-Oriented Assignment
• If two successive bit modules (data capacity < 8 bits) residing in

different segments are comprised in one data byte, it is not possible to
read these modules..

• The process data within one segment must be arranged successively.

• A multiple assignment of process data is not supported at first.

• If a change is made within a segment (e.g. if an I/O module is replaced
by a module with a higher data capacity), the data assignment of the
following local bus device may change; this cannot be eliminated by an
alteration in the I/O editor. In such cases, the absolute identifiers in the
declaration parts of the programs must be adjusted.

Example: User 1.1 (16-bit input) is replaced by a higher-capacity module
(32-bit input).

Modulaustausch.bmp

Fig. 10-23: Module replacement

WinPCL 06VRS I/O Editor 10-19

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Restrictions to Device-Oriented Assignment
• Successive bit modules (data capacity < 8 bits) whose process data

are residing in one data byte are comprised to a logic device.

• According to the above proposal for assigning the segment number /
position (CMD) to the logic device numbers (WinPCL), the assigned
position numbers may not be higher than 99 (normal case: max.
8 local bus devices per bus terminal).

10.4 Status Display, I/O Editor

There is no active status display for the I/O editor.

The option of displaying the Bit/BYTE/WORD/DWORD variable values
(%IDx.x or %QDx.x) by means of the "Start / Force, <Shift>+<F8>" menu
item is in preparation.

10.5 Options, I/O Editor

The settings for the column width in the I/O editor can be selected using
the Extras / Options menu item.

optionen_ansicht_io.bmp

Fig. 10-24: "Extras / Options" for column width settings

10-20 I/O Editor WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

10.6 Pop-up Menu, I/O Editor <Shift>+<F10>

This pop-up menu contains the essential commands for this editor. It can
be opened by pressing the right mouse button or the <Shift>+<F10> keys.

Menu items Explanation

Open

New data record Opens the mask for input of a new data record.

Edit data record Opens the mask for changing the current data record.

Delete data record Deletes the current data record.

Import The ASCII file chosen from the "WinPCL text files" is loaded into the I/O editor.

Import CMD The CSV file written from the CMD is read and made visible in the I/O editor.

Export data record The current data record is exported as ASCII file and stored in the folder "WinPCL text
files".

Export I/O table The I/O table is exported as ASCII file and stored in the folder "WinPCL text files".

Syntax text List of all errors in the current editor. You can move to the place where the error occurred
by double-clicking the mouse or by pressing the <Ctrl>+<Enter> keys.

Error help The line, where the cursor is positioned, is tested for correct syntax. If an error is detected,
this error is explained, also possible with <Ctrl>+<F1>.

Force
(STATUS mode)

Allows the input of an absolute address. The value is indicated and can be forced once.
The window remains open and the process can be activated again.
Forcing takes place between the update of the input variables and the start of program
code execution.

Print current window Prints the editor contents.

Options Toggles the absolute address and the name of the variable.

Use RE/PR Opens the third part of the I/O table for comparing the required I/Os with the existing I/Os.

Sort by I/O Table is sorted by inputs and outputs.

Sort by interface
connection

Table is sorted by interface connections.

Sort by place of use Table is sorted by place of use of RE/PR.

Sort by logical no. Table is sorted by logical numbers.

Special Inserting and removing gaps when devices are deleted and added

Removing gaps Input dialog for removing gaps in the DPR

Inserting gaps Input dialog for inserting gaps in the DPR

Internals Search for faults in the programming system, to be used only if approved by the service.

WinPCL 06VRS Data Types in WinPCL 11-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

11 Data Types in WinPCL

11.1 General Agreements

This chapter defines textual and graphic elements which are common to
all programming languages of the system.

Character Set
Within the programming system the ASCII character set, ISO-646 IRV,
given as Table 1 – Row 00 of IDO/IEC 10646 is used.

Large and small letters lead to different names, i.e. 'abcd' distinguishes
from 'ABCD' and 'AbcD'. Umlauts can be used only in the comments.

Identifiers (Names)
An identifier is a string of letters, digits, and underline characters which
shall begin with a letter or underline character.

The case of letters is significant in identifiers, e.g., the identifiers DEFG,
$%&', and D%&G shall be interpreted different.

Furthermore, underlines shall be significant in identifiers, e.g., $B%&' and
$%B&' shall be interpreted as different identifiers. Multiple leading or
multiple embedded underlines are not allowed.

Spaces are not allowed in identifiers.

An identifier (Name) of variables, steps, transitions, actions, programs,
function blocks, functions and data types must not contain more than 32
signs. The limitation is necessary, as external programs cooperating with
WinPCL, can not handle more than 32 signs.

Keywords
Keywords are unique combinations of characters utilized as individual
syntactic elements as defined in ‘EN 61131-3’. Keywords shall not contain
imbedded spaces. They must not be employed as names. Otherwise, the
programming system rejects them.

Note: Keywords contain only upper case letters and '_’.

Use of White Space
The user shall be allowed to insert one or more characters of "white
space" anywhere in the text of programmable controller programs except
within keywords, literals, enumerated values, identifiers, directly
represented variables, or delimiter combinations . "White space" is
defined as the SPACE character with encoded value 32 decimal, as well
as non-printing characters such as tab, newline, etc. for which no
encoding is given in IEC/ISO 10646-1.

Comments
User comments shall be delimited at the beginning and end by the special
character combinations "�" and "�".

Comments do not have any syntactic or semantic importance in all
programming languages. They can be entered in the corresponding
columns of the editors (for example Declaration-, IL editor ...) or by means
of a separate comment window.

Note: The use of nested comments, e.g., �� �� 1(67('� �� �,
shall be treated as an error.

11-2 Data Types in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Pragmas
Pragmas shall be delimited at the beginning and end by curly brackets
�^� and �`�, respectively. The syntax and semantics of particular
pragma constructions are implementation dependent. Directives shall
be permitted anywhere in the program where spaces are allowed, except
within character strings.

Note: The use of pragmas is not allowed in user applications.

External Representation of Data
External representations of data in the various programmable controller
programming languages shall consist of

• numeric literals,

• character strings,

• and time literals.

Numeric Literals
There are two classes of numeric literals: integer literals and real literals.
A numeric literal is defined as a decimal number or a based number. The
maximum number of digits for each kind of numeric literal shall be
sufficient to express the entire range and precision of values of all the
data types which are represented by the literal in a given implementation.

Single underline characters (B) inserted between the digits of a numeric
literal are not allowed.

Decimal literals shall be represented in conventional decimal notation.
Real literals shall be distinguished by the presence of a decimal point. An
exponent indicates the integer power of ten by which the preceding
number is to be multiplied to obtain the value represented. Decimal
literals and their exponents can contain a preceding sign (� or��).

Integer literals can also be represented in base 2, 8, or 16. The base
shall be in decimal notation. For base 16, an extended set of digits
consisting of the letters $ through) shall be used, with the conventional
significance of decimal 10 through 15, respectively. Based numbers shall
not contain a leading sign (��or��).

Boolean data shall be represented by integer literals with the value zero
(�) or one (�), or the keywords)$/6(or 758(, respectively.

Feature description Examples

Base 10 literals (decimal) 240

Base 2 literals (dual) 2#11100000

Base 8 literals (octal) 8#340

Base 16 literals (hexadecimal) 16#E0

Fig. 11-1: Numeric literals

Floating point numbers can contain up to 7 Digits (REAL), and/or 13
Digits (LREAL): 1.234567, -123.4567 ...

Floating point number with exponent can contain besides an exponent:
1.234567E+7, -1. 234567 E-15

Floating point numbers (REAL) can be entered in the ranges:
-3.402823E38...-1.175495E-38 and 1.175495E-38...3.402823E38.

Signs are allowed before the exponent and the base number.

WinPCL 06VRS Data Types in WinPCL 11-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The internal format of REAL (1 bit sign, 8 bits exponent and 23 bits
mantissa) can not depict certain values. The next representable value is
taken, i.e. the larger a number becomes, the more inaccurate is its
resolution.

Therefore, there is no conventional zero. It is rounded as -1.175495E-38
or 1.175495E-38 depending on wether it is calculated in the negative or
positive range (see also Standard Data Types).

Note: Zero is defined as 0.0

Time Literals
Duration data shall be delimited on the left by the keyword 7# . The
representation of duration data in terms of days, hours, minutes, seconds,
and milliseconds, or any combination thereof, shall be supported. The
least significant time unit can be written in real notation without exponent.

"Overflow" of the most significant unit of a duration literal is permitted,
e.g., the notation 7���K��P is permitted.

The following time units are permitted:

Feature description Examples

day (d) T#14d

hour (h) T#147h

minute (m) T#47m

second (s) T#14s

Millisecond (ms) T#12ms

combination T#25h3s, T#12m13s127ms, T#1m33.3s

Fig. 11-2: Duration literal features

A decimal point is possible.

The boundary for the TIME data type is with the time base of 2 ms:
99d10h5m34s590ms. Presently, this value is also indicated, if the variable
of the TIME data type contains the bit pattern 16#FFFFFFFF. Currently,
the input is on 23d23h59m59s999ms limited.

Note: The minimum time pattern is 2ms.

11-4 Data Types in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Character String Literals
A single-byte character string literal is a sequence of zero or more
characters from Row 00 of the ISO/IEC 10646 character set prefixed and
terminated by the single quote character (’). An empty character string is
allowed. In single-byte character strings, the three-character combination
of the dollar sign ($) followed by two hexadecimal digits shall be
interpreted as the hexadecimal representation of the eight-bit character
code.

Two-character combinations beginning with the dollar sign shall be
interpreted as shown in table below when they occur in character strings.

No. Example Explanation

1 ‘’ Empty string (length zero)

‘A’ String of length one containing the single character A

‘ ‘ String of length one containing the "space" character

‘$05’ String of length one containing the

‘$’’ String of length one containing the "single quote" character

‘RL’ String of length two containing CR and LF characters

‘$$1.00’ String of length five which would print as "$1.00"

Fig. 11-3: Character string literal features

No. Combin. Interpretation when printed

2 $$ Dollar sign

3 $’ Singl quote

4 $L Line feed

6 $P Form feed (page)

7 $R Carriage return

8 Tab

Fig. 11-4: Combination with '$'

Note: $N, Newline, is not supported.

11.2 Data Types and Initial Values

The programming system allows the application of

• Standard Data Types, elementary, predefined,

• Firmware Data Types, data types, which are available in the library in
addition to elementary data types,

• User Data Types, data types additionally declared by the user.

• This chapter also contains instructions on how to use
Structures (STRUCT) and ARRAYs and

• Pointer and Address of.

WinPCL 06VRS Data Types in WinPCL 11-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

11.3 Standard Data Types

Elementary Data Types, Value Ranges and Initial Values
The EN 61131-3 standard specifies the elementary data types and the
value ranges and initial values permissible for these data types, all listed
in the table below.

Data types with a data capacity of 64 bits are released for only a part of
the controls.

Datentypen.bmp

Fig. 11-5: Elementary data types, value ranges and initial values

11-6 Data Types in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Note: At position 0 (string[0]), the STRING data type specifies the
current length of the character string. The initial value of this
position is zero!

If the value of a CHAR is loaded into a character string, the
length of the character string must also be updated!

Note: The minimum resolution for the TIME data type is 2 ms.
Values are rounded automatically.

The 32-bit version allows the display of a time interval of more
than 24 days.

Note: Where the REAL and LREAL data types are concerned, the
initial value of 0.0 is filed as one of the two values which is
nearest to it. Take caution when comparing for "equality /
inequality".

Location and size prefix features for directly represented variables

The address of a variable contains:

• percent sign "%" at the beginning,

• a location prefix (Input, Output, Memory, Memory RETAIN),

• a size prefix (BOOL, BYTE, ...),

• one or more unsigned integers, separated by periods (�).

Parts of the address of a variable

Location / Size Explanation

Location: I or E
O, Q or A
M
R

Input
Output
Memory
Memory, RETAIN

Size none or X
B
W
D
L

BOOL (1 bit)
BYTE (8 bit)
WORD (16 bit)
DWORD (32 bit)
LWORD (64 bit)

Fig. 11-6: Parts of the address of a variable

Example

%I1.2.3 logical device number 1, input byte 2, bit 3 or

%IX1.2.3 (another representation)

%Q127.5.2 logical device number 127, output byte 5, bit 2 or

%QX127.5.2 (another representation)

%IB1.2 logical device number 1, input byte 2,

%QW127.5 logical device number 127, output byte 5

Depending on the size, the bit strings BYTE, WORD, DWORD and
LWORD may be redefined to numbers.

WinPCL 06VRS Data Types in WinPCL 11-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The following rules apply to data higher than one byte:

 WORD: Specified slot and next one

e.g.: %IW1.0 HighByte: %IB1.0, LowByte: %IB1.1

 DWORD: Specified slot and next three slots

e.g.: %ID1.0 HighByte: %IB1.0,....., LowByte: %IB1.3

 LWORD: Specified slot and next seven slots

e.g.: %IL1.0 HighByte: %IB1.0,....., LowByte: %IB1.7

2048 flag bits are available for flags. These may be accessed through
byte, word, double word, or long word address (standard in
Tools\Options\Compile...).

Falg bits: %M0.0 ... %M2047.7or %MX0.0... %MX2047.7

Flag bytes: %MB0 ... %MB2047

Flag words: %MW0 ... %MW2046

Flag double word: %MD0 ... %MD2044

Flag long word: %ML0 ... %ML2040

Example for the location of memory storage:

%MD1 contains the value 16#3F2E1D0C.
������ �������0/��������������������������!

������ �������0'���������!

������ ���0:���! ���0:���!

������ ���� ���0:���! ����

������ ��)� ��(� ��'� ��&� ���

���0%� �0%� �0%� �0%� �0%� �0%�

����

��0������������������������

���������������������������

At the same time, 2048 flag bits are available as retain flags (standard in
Tools\Options\Compile...).

The retain flags may be accessed in the same manner through bit-, byte-,
word-, double word, or long word addresses:

Flag bits: %R0.0 ... %R2047.7 or %RX0.0...%RX2047.7

Flag bytes: %RB0 ... %RB2047

Flag words: %RW0 ... %RW2046

Flag double word: %RD0 ... %RD2044

Flag long word: %RL0 ... %RL2040

Note: The use of absolute addressed variables is allowed in a
program, but not in a function block or in a function

Directly represented external variables are permitted in
programs or function blocks.

11-8 Data Types in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Extensions to Elementary Data Types

Structures (STRUCT)
A structure consists of one or several elements, which can be of the
elementary type or can be a structure or an array. Each element has its
own name and, if it is of the elementary type, can have a user-defined
initial value. Structures and arrays have their own initial values. In addition
to the declaration comment of the structure, each element can have its
own comment.

ST Werkzeug.bmp

Fig. 11-7: Structure of a declaration illustrated by the "TOOL" structure

The declaration comment is added to the line specifying the name.
Of the four elements of the structure, "number" is defined with "99" by the
user; the standard value "0" or "FALSE" is assigned to the other
elements. The initial value of name is ’ ’ (empty) .

Accessing a structure element:

The following variable is agreed in the declaration part of a file:

Name AT TYPE := Comment

Tool_1 TOOL (*Definition of the variable "Tool_1"*)

Fig. 11-8: Declaration line (VAR…END_VAR range)

Based on the declaration, there are the following access possibilities:

OP Operand Comment

LD Tool_1 (*Load complete structure*)

LD Tool_1.Name (*Load "Name" from "Tool_1"*)

LD Tool_1.Name[5] (*Load 5th letter from "Name" from Tool_1*)

Fig. 11-9: IL lines for access to structures and structure elements

Assigning an absolute address:

Irrespective of the dataset it contains, each structure starts with a word
address. The size of the address range is based on the dataset specified
by the data type.

Name AT TYPE := Comment

y_axis %IW100.8 iAXIS (*Bus type "MTC200*)

Fig. 11-10: Absolutely addressed structure (axis of type "iAXIS")

WinPCL 06VRS Data Types in WinPCL 11-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ARRAYs
The elements of an array have a unique data type, which can be of the
elementary type or can be a structure or even an array itself. The user
can assign a unique initial value to all elements, if they are elementary.
Structures and arrays have their own initial values.

The elements of an array are arranged dimensionally

(1 to 4 dimensions).

In addition to the declaration comment of the array, a comment can be
given for each dimension.

The declaration comment is added to the line specifying the name.

All dimensions start with the zero element. The unique data type is BOOL

The user sets the value for each element to TRUE.

AR palette.bmp

Fig. 11-11: Structure of a declaration illustrated by example of the "PALLET"
elementary array

Accessing the array or an array element:

The following variable is agreed in the declaration part of a file:

Name AT TYPE := Comment

Pallet_1 PALLET (*Definition of the variable "Pallet_1"*)

Fig. 11-12: Declaration line (VAR…END_VAR range)

Based on the declaration, there are the following access possibilities:

OP Operand Comment

LD Pallet_1 (*Load complete array*)

LD Pallet_1[1,3] (*Load element 1, 3*)

LD Pallet_1[length,width] (*Load "length", "width" element*)

Fig. 11-13: IL lines for accessing the array or an array element

11-10 Data Types in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Instead of an elementary variable, the element of an array can also be a
structure or even an array itself. The figure below shows an ARRAY of
STRUCT.

AR Wechsler.bmp

Fig. 11-14: Declaration illustrated by example of the "T_Changer" structured
array

The declaration comment is added to the line specifying the name.
All of the elements are Structures (STRUCT), comprising several
elements themselves.

Accessing the array or an array element:

The following variable is agreed in the declaration part of a file:

Name AT TYPE := Comment

T_Changer_1 T_CHANGER (*Def. of the variable T_Changer_1*)

Fig. 11-15: Declaration line (VAR…END_VAR range)

Based on the declaration, there are the following access possibilities:

OP Operand Comment

LD T_Changer_1 (*Load complete array*)

LD T-Changer_1 [10] (*Load eleventh element, i.e. a complete
structure*)

LD T_Changer_1 [10].Name (*Load "Name" of eleventh array element*)

LD T_Changer_1 [10].Name[5] (*Load fifth letter of "Name" of eleventh array
element*)

Fig. 11-16: IL lines for accessing the array or an array element

Assigning an absolute address:

Irrespective of the data set it contains, each array starts with a word
address. The size of the address range is based on the data set specified
by the data type.

Name AT TYPE := Comment

Pallet_1 %RW100 PALETTE (*RETAIN ARRAY*)

Fig. 11-17: Absolutely addressed array (retain flag)

WinPCL 06VRS Data Types in WinPCL 11-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Pointer and Address of
WinPCL allows the data access with typed POINTER / ADRESSE OF.

A pointer is declared in the declaration part of a program or function
block.

‘^’ in front of the data type identifies the pointer.

The data type behind ‘^’ defines length of the area and type and number
of elements which are in the area.

Write and read access is monitored.

The initial value of a pointer is NIL (NIL pointer

Note: A pointer that does not show onto a variable (NIL pointer) yet
is used during the program processing, so the rung is not
executed (skipped over as it were).

The customer receives about S#ErrorFlg/S#ErrorNr (kind of
error)/S#ErrorTyp (cause of error) the information and it
should evaluate.

Name AT TYPE Comment

VAR

bitptr ^A_BOOL16 A_BOOL16: ARRAY [0..16] of BOOL

END_VAR

Fig. 11-18: Declaration of a pointer, in the example "bitptr"

The point the pointer is to be directed at is transferred using a ‘P#’
operator :

Label Operand Operator Comment

LD P#bytefeld[9] Load address of the 9th element of the
bytefeld variable

ST Bitptr => Start address of the section of type
A_BOOL16

Fig. 11-19: "Address of" in the instruction list

Pointer

Address of

11-12 Data Types in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

A pointer can point either for data access, in read or write form, to a
complete area in accordance with the data type connected to it or to any
element of its data type.

Label Operand Operator Comment

LD bitptr^ Means:
Fetch the complete section.

LD bitptr^[1] Means:
Fetch the first element (A_BOOL16 is a
1-d ARRAY).

Fig. 11-20: Example of access via pointer

Note: The memory area of the "source" must always be greater
than or at least equal to the area of the "destination".

If the limit of the source area for read or write access is
exceeded, an error is generated during runtime. The
operation will not be carried out! (Example of an incorrect
access: It is intended to copy a structure of 7 bits to one byte.)

The bytefeld array is defined: A_BYTE40 ARRAY [0..39] of BYTE.

It is intended to copy 16 bits from this array, starting with byte 9.

The 16 bits are to be organized as bitfeld array "A_BOOL16 ARRAY
[0..15] of BOOL".

BYTE 0 0 ... 7

... ...

BYTE 9 72 ... 79 --> Bit 0 ... 15

BYTE10 80 ... 87

... ...

BYTE 39 312 ... 319

Fig. 11-21: Structure of the "bytefeld" array and bits to be copied

Name AT TYPE Comment

VAR

bytefeld A_BYTE40 Source

bitptr ^A_BOOL16 Pointer of type A_BOOL16

bitfeld A_BOOL_16 Destination

END_VAR

Fig. 11-22: Declaration for the example

‘bitptr’ is a pointer with address and type information.

The type information is transmitted into the declaration.

The pointer is a NIL pointer until an address is transmitted to the pointer.

Pointer points to

Example

WinPCL 06VRS Data Types in WinPCL 11-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The current address is transmitted at least once in the implementation
with P#. It can be changed as often as required.

BYTE 0 0 ... 7

... ...

P#bytefeld[9] BYTE 9 72 ... 79

BYTE10 80 ... 87

... ...

BYTE 39 312 ... 319

Label Operand Operator Comment

LD P#bytefeld[9] Load address of BYTE 9.

ST bitptr => Start address of the section of type
A_BOOL16

..........

LD bitptr^ Copy the section from the bytefeld

ST bitfeld into the bitfeld, type limits are checked

..........

LD bitptr^ Means:
Fetch the complete section
(all 16 bits).

...........

LD bitptr[1] Means:
Fetch bit 73.

Fig. 11-23: Implementation for the example

11-14 Data Types in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

11.4 Firmware Data Types

Firmware data types have been developed for an effective support of
firmware function blocks e.g. for operating serial interfaces or for
diagnosis support. They are stored in the library of the programming
system and can be used by the user, but cannot be changed.

• Serial Interfaces, Data Types

• PROFIBUS DP, Data Types

• ASIM, Data Types

• Sequential Function Chart, Data Types

Serial Interfaces, Data Types
Before being operated, a serial interface must first be parameterized. The
parameters of an interface are grouped using the COM data type. The
individual elements of the data type are designed as integer values, which
correspond with the ident-numbers of the Rexroth-IONET protocol.

COM STRUCT (*Firmware data types*)

DEVICE INT Device number

SERNR INT Number of the serial interface

BAUD INT Baud rate

DATA INT Number of data bits

PARITY INT Parity

STOP INT Number of stop bits

PROTOKOL INT Protocol

HANDSH INT Handshake

END_STRUCT

Parameter Value Explanation

DEVICE 0...999 Device number

0 Onboard or SIO4 interface

1...999 Not defined under WinPCL

Parameter Value Explanation

SERNR 0...4 Number of the interface. 0 is the onboard interface of
the PLC card.

Parameter Value Explanation

BAUD 1...21 Transmission rate

Explanation of the parameter
values which can be set in the

COM data type

WinPCL 06VRS Data Types in WinPCL 11-15

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Value Baud rate

1 50

2 75

3 110

4 134.5

5 150

6 200

7 300

8 600

9 1050

10 1200

11 1800

12 2000

13 2400

14 3600

15 4800

16 7200

17 9600

18 19200

19 38400

20 57600

21 115200

Parameter Value Explanation

DATA 1...4 Number of useful data bits

Value Data bit

1 8

2 7

3 6

4 5

Parameter Value Explanation

PARITY 1...5 Type of parity check

Value Parity

1 NONE

2 ODD

3 EVEN

4 MARK

5 SPACE

11-16 Data Types in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Parameter Value Explanation

STOP 1...3 Number of stop bits

Valu
e

Stop bit

1 1

2 1.5

3 2

Parameter Value Explanation

PROTOKOL 1...7 Type of protocol

Value Protocol

1 Not defined

2 Not defined

3 ASCII

4 SIS protocol

5 ASCII-RS232

6 ASCII-RS422

7 ASCII-RS485

Parameter Value Explanation

HANDSH 1...3 Type of handshake

Value Handshake

1 None

2 Software

3 Hardware

WinPCL 06VRS Data Types in WinPCL 11-17

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

PROFIBUS DP, Data Types
The following Firmware Data Types are available:

• PROFIBUS status information: DPGLOBAL

• Status bits of a PROFIBUS slave: DPSLDIAG

DPGLOBAL
Status information on the PROFIBUS DP, Data Types

The firmware data type DPGLOBAL is an "Array of BOOL", which
indicates the status bits of the PROFIBUS. The array consists of the
following elements:

Signal Name Meaning

CTRL Control Error Error in parameter setting.

ACLR Autoclear Error The master has stopped the communication with all
slaves.

NEXC Non Exchange
Error

At least one slave did not obtain the data exchange
status.
No exchange of process data.

FAT Fatal Error No bus communication possible after fatal bus
error, e.g. bus short-circuit.

EVE Event Error Bus short-circuits were detected by the master. The
number of short-circuits is stored in the variable
"bus_error_cnt". This bit is not deleted
automatically.

NRDY Host Not Ready
Notification

The user program signals that it is not ready.

TOUT Timeout Error Timeout due to denied telegrams detected by the
master.
This bit is not deleted automatically.

Fig. 11-24: PROFIBUS status information:

11-18 Data Types in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

DPSLDIAG
Slave status bits PROFIBUS DP, Data Types

The firmware data type DPSLDIAG is an array, which indicates the status
bits of a PROFIBUS slave. The array consists of the following elements:

Signal Meaning

StaNonEx DP slave does not answer

StaNotRd DP slave not ready

CfgFault Error in parameter setting for DP slave

ExtDiag DP slave reports extended diagnosis

NotSupp DP slave reports invalid command

InvSlRes Invalid DP slave answer

PrmFault Last parameter telegram faulty

MastLock DP slave parameterized by another master

PrmReq DP slave not parameterized yet

StatDiag DP slave diagnosis provided

S2_D2 Reserved

WDOn Watchdog of the DP slave is active

FreezeMd Freeze command active

SyncMd Sync command active

S2_D6 Reserved

Deaktiv DP slave not projected

S3_D0 Reserved

S3_D1 Reserved

S3_D2 Reserved

S3_D3 Reserved

S3_D4 Reserved

S3_D5 Reserved

S3_D6 Reserved

ExtDiag0 Data area overflow extended diagnosis

MastAdd Address of the parameterizing DP master

IdentNr Ident number of the DP slave

Fig. 11-25: Slave status signals

WinPCL 06VRS Data Types in WinPCL 11-19

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ASIM, Data Types
The following Firmware Data Types are available:

ASISLDIAG
The diagnostic information of an ASI slave are kept as instance of the
data type described below:

Signal Meaning

NO_RESPONSE The device does not answer or is not available.

BUFFER_OVERFLOW The number of the entries in the error buffer
exceeds the maximum possible number.

RESERVED_2 At the moment not used.

CONFIGURATION_FAULT The detected IO or ID code differs from the
configured code.

RESERVED_4/5/6 At the moment not used.

NOT_ACTIVE The slave is not active in the current
configuration.

CONFIGURATION_DATA Retrieved IO/OD code.

DEV_NOT_INITIALIZED Slave was not initialized.

DEV_NOT_ACTIVE Slave not active.

NO_FAULT Slave indicates no error.

DEV_MISSING Slave not available.

DEV_FOUND Is not supported yet.

DIAG_0/1/2 Slave-specific diagnostic information. See Manual
of the manufacturer.

Fig. 11-26: Slave status signal

11-20 Data Types in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Sequential Function Chart, Data Types
To the structuring elements of the sequential function chart, i.e. step,
transition, action, and to the sequential function chart itself, upgradable
Firmware Data Types are assigned, permitting the user to control the
capacity of the sequential function chart to a sufficient extent. The
minimum capacity is as follows:

• Actions: _tACTION

• Steps: _tSTEP

• Transition: _tTRANSITION

• SFC - internal: _tSFCINTERN

• SFC - external: _tSFC

Instead of this data type, the user can develop a data type which, in
addition to the above mentioned elements, contains further elements
which are attached.

_tACTION
Data type of actions (Sequential Function Chart, Data Types)

Name Type Comment

action_name.Q BOOL Indicates whether the action is being executed.

action_name.A BOOL Indicates whether the action is being executed,
reprocessed or forced (all processing methods).

action_name.F BOOL Is the variable by which the action can be forced
and which indicates at the same time whether the
action is being forced.

action_name.JOG BOOL Only important in automatic jog mode; indicates
that the following transition is fulfilled.

Fig. 11-27: Variables which are assigned to an action with _tACTION

The time diagrams for the variables action_name.Q and action_name.A
run according to the action qualifier selected. The forcing sequence is to
be found in the following figure.

Systemvar_Aktion.bmp

Fig. 11-28: Variables for forcing action xxx

Note: It is not possible to assign structure elements to Boolean
actions and negated Boolean actions.

A forcing is not therefore either possible in the manual mode.

WinPCL 06VRS Data Types in WinPCL 11-21

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

_tTRANSITION
Data type of transitions (Sequential Function Chart, Data Types)

Name Type Comment

trans_name.JOG BOOL Write, only in AUTOMATIC JOG mode,
TRUE if the transition should not advance after
firing

Fig. 11-29: Variables assigned to a transition with tTRANSITION

Instead of this data type, the user can develop a data type which, in
addition to the above mentioned element, contains further elements which
are attached.

Note: Boolean variables, negated Boolean variables, as well as the
constants TRUE and FALSE, no JOG variable can be
assigned.

_tSTEP
Data type of steps (Sequential Function Chart, Data Types)

Name Type Comment

step_name.X BOOL Step flag: TRUE, if step is active

step_name.F BOOL TRUE - forcing of the step, possible only the in
manual mode

step_name.SYNC BOOL TRUE - request to set this step for
synchronization

step_name.T TIME Step active time - read only, time elapsed since
activation of the step

Fig. 11-30: Variables which are assigned to a step with _tSTEP

The step flag step_name.X indicates whether a step is active or not.

Using the step_name.F flag, the step can be activated and deactivated by
a program or by forcing if MODE_AUTO = FALSE (no automatic mode).

The step_name.SYNC flag allows a step to the preselected in the manual
mode. With the next synchronization, an attempt is made to activate this
step as part of the new step set.

The step active time indicates for how long the step is already been
active. It retains the last value after deactivation until the step is
reactivated or RESET becomes active.

Instead of this data type, the user can develop a data type which, in
addition to the above mentioned elements, contains further elements
which are attached.

11-22 Data Types in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

_tSFCINTERN
Internal data type of SFCs (Sequential Function Chart, Data Types)

• SFC - external: _tSFC

_tSFCINTERN STRUCT Comment

START BOOL Further processing of the sequential function
chart, write: releasing one blocked with JOG,
however filled transition condition

STOP BOOL Stop of the sequential function chart, write

SET_HAND BOOL Forcing of the operating mode
TRUE, change sequential function chart from
automatic mode to manual mode, Write

MODE_AUTO BOOL Indication of the current operating mode:
TRUE, if sequential function chart in automatic
mode - read only

STATUS_STOP BOOL Indication of the current operating mode:
TRUE, if sequential function chart was stopped -
read only

RESET BOOL Reset and initialization of the sequential function
chart in manual and automatic mode, write

SYNC BOOL Attempt to activate the sequential function chart
with preset steps (step_name.SYNC=TRUE) in
automatic mode, write

JOG BOOL Transfer sequential function chart from
automatic mode into automatic JOG mode, write

ERRORFLG BOOL Analog to S#ErrorFlg with POEs

ERRORNR USINT Analog to S#ErrorNr with POEs

ERRORTYP INT Analog to S#ErrorTyp with POEs

aIN_USER _tACTION Permanently executed system action, to be filled
in by the user

aIN_SYSTEM _tACTION Permanently executed system action, used by
the system

aOUT_SYSTEM _tACTION Permanently executed system action, used by
the system

aOUT_USER _tACTION Permanently executed system action, to be filled
in by the user

END_STRUCT

Fig. 11-31: _tSFC structure

Note: Forcing of the action execution when the mode changes: Only
steps are forced. There will be changes in the actions.

Instead of this data type, the user can develop a data type which, in
addition to the above mentioned elements, contains further elements
which are attached.

_tSFC
External data type of SFCs (Sequential Function Chart, Data Types)

_tSFC STRUCT Comment

INTERN _tSFCINTERN; (*Structure for controlling the sequential
function chart*)

END_STRUCT

Fig. 11-32: _tSFC structure

WinPCL 06VRS Data Types in WinPCL 11-23

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

11.5 User Data Types

User data types can be designed as structures or arrays.

Structures consist of one or several elements, which can be of the
elementary type or can be a structure or an array. Each element has its
own name and, if it is of the elementary type, can have a user-defined
initial value. Structures and arrays have their own initial values. In addition
to the declaration comment of the structure, each element can have its
own comment.

ST Werkzeug.bmp

Fig. 11-33: Structure of a declaration illustrated by the "TOOL" structure

The declaration comment is added to the line specifying the name.

Of the four elements of the structure, "number" is defined with "99" by the
user; the standard value "0" or "FALSE" is assigned to the other
elements. The name is ’ ’ (empty) .

The elements of an array have a unique data type, which can be of the
elementary type or can be a structure or even an array itself. The user
can assign a unique initial value to all elements, if they are elementary.
Structures and arrays have their own initial values.

The elements of an array are arranged dimensionally

(1 to 4 dimensions).

Each dimension starts with the element "0".

In addition to the declaration comment of the array, a comment can be
given for each dimension.

AR palette.bmp

Fig. 11-34: Structure of a declaration illustrated by example of the "PALLET"
elementary array

Structures (STRUCT)

ARRAYs

11-24 Data Types in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The declaration comment is added to the line specifying the name.

All dimensions start with the zero element.

The unique data type is BOOL

The user sets the value for each element to TRUE.

AR Wechsler.bmp

Fig. 11-35: Declaration illustrated by example of the "T_Changer" structured
array

The declaration comment is added to the line specifying the name.
All of the elements are Structures (STRUCT), comprising several
elements themselves.

WinPCL 06VRS Functions in WinPCL 12-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

12 Functions in WinPCL

12.1 Functions, General Information

A function (FN) is a program organization unit which may have

• 1...k inputs,

• 1...m outputs,

• a main output and

• internal variables.

The topmost input of a function can be connected to a network, the
following ones only to a variable or a constant.

fn_allgemein.bmp

xxx - Type name of the function (at top), main output
INi - Inputs of the function 1...k (IN1: main input)
OUTj - Outputs of the function 1...m

Fig. 12-1: Function - general interface

The main output has the type name of the function, its type is identical to
the type of the function. A network can be connected to the main output.

If necessary, a variable can be assigned to the 1...m outputs.

The call of a function with the same assignment at the inputs always
supplies the same result at the output.

Computed intermediate results are rejected after the function value of the
output has been determined.

A pre-initialization of variables is not possible.

A function can be used in any other program organization unit.

A distinction is made between standard and firmware functions as well as
user-defined functions. Their interface is constant, even for further
developed standard libraries and operating systems.

• Standard Functions: in accordance with EN 61131-3 (+ supplements)

• Firmware Functions: measured-value acquisition, communication of
the PLC with the CNC, bus communication

• User Functions: written by the user himself.

Standard and firmware functions can be used, but not modified.

Their interface is constant, even for further developed standard libraries and
operating systems.

12-2 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

12.2 Standard Functions

The standard functions and standard operations for the Rexroth control
system comply with EN 61131-3.

Standard functions are available in all of the programming languages of
the system and can be used directly, but not modified.

Functions for type and code conversion

• BYTE_BCD_TO_INT, BYTE_TO_CHAR, BYTE_TO_GRAY,
BYTE_TO_INT, BYTE_TO_SINT, BYTE_TO_USINT

• CHAR_TO_BYTE

• DINT_TO_DWORD, DINT_TO_INT, DINT_TO_UDINT,
DINT_TO_REAL, DINT_TO_TIME

• DWORD_TO_DINT, DWORD_TO_REAL

• GRAY_TO_BYTE

• INT_TO_BCD_WORD, INT_TO_BYTE, INT_TO_DINT,
INT_TO_SINT, INT_TO_STRING, INT_TO_UINT, INT_TO_USINT,
INT_TO_WORD

• REAL_TO_DINT, REAL_TO_STRING, REAL_TO_DWORD

• SINT_TO_BYTE, SINT_TO_INT

• STRING_TO_INT, STRING_TO_REAL

• UDINT_TO_DINT

• USINT_TO_BYTE, USINT_TO_INT

• UINT_TO_INT, UINT_TO_WORD

• TIME_TO_DINT

• WORD_BCD_TO_INT, WORD_TO_INT, WORD_TO_UINT

Numeric functions

• ABS_INT, SIGN_INT, as a supplement to the operations ADD, SUB,
MUL, DIV, MOD

• SQRT_REAL, LN_REAL, LOG_REAL, EXP_REAL

• SIN_REAL, COS_REAL, TAN_REAL

• ASIN_REAL, ACOS_REAL, ATAN_REAL

Functions for time-to-integer conversion

• TIME_DAY, TIME_HOUR, TIME_MIN, TIME_SEC, TIME_MS

Functions for integer-to-time conversion

• MAKETIME

Bit string functions as a supplement to ‘:=’, AND, OR, XOR

• SHL_BYTE, SHL_WORD, SHL_DWORD, SHL_LWORD

• SHR_BYTE, SHR_WORD, SHR_DWORD, SHR_LWORD

• ROL_BYTE, ROL_WORD, ROL_DWORD, ROL_LWORD

• ROR_BYTE, ROR_WORD, ROR_DWORD, ROR_LWORD

• CONCAT_BYTE, CONCAT_WORD

• HIGH_BYTE, LOW_BYTE, HIGH_WORD, LOW_WORD,

WinPCL 06VRS Functions in WinPCL 12-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Character string functions

LEN, LEFT, RIGHT, MID, CONCAT_S, INSERT, DELETE, REPLACE,
FIND, as a supplement to the STRING operations

Functions for Type and Code Conversion
For a part of the control technology the data type width was extended to
64 Bit. The corresponding functions are developed and introduced
analogous to DINT, UDINT or REAL.

BYTE_TO_CHAR
The function BYTE_TO_CHAR converts any byte into a character of the
extended ASCII character set (Standard Functions).

Byte_to_char.bmp

Fig. 12-2: Standard function BYTE_TO_CHAR

byte_1 char_1

... ...

0011 0001 ’1’

... ...

0111 1010 ’z’

Fig. 12-3: Value assignment BYTE_TO_CHAR

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

BYTE_TO_GRAY
The function BYTE_TO_GRAY deletes the high-order half-byte of the input
variable and converts the low-order half-byte according to the table below
(Standard Functions).

byte_to_gray.bmp

Fig. 12-4: Standard function BYTE_TO_GRAY

12-4 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

byte_1 byte_2

**** 0000 0000 0000

**** 0001 0000 0001

**** 0010 0000 0011

**** 0011 0000 0010

**** 0100 0000 0110

**** 0101 0000 0111

**** 0110 0000 0101

**** 0111 0000 0100

**** 1000 0000 1100

**** 1001 0000 1101

**** 1010 0000 1111

**** 1011 0000 1110

**** 1100 0000 1010

**** 1101 0000 1011

**** 1110 0000 1001

**** 1111 0000 1000

Fig. 12-5: Value assignment BYTE_TO_GRAY

****: An assignment unequal to 0000 results in an error message:

S#ErrorFlg: 1, S#ErrorNr: 4, S#ErrorTyp: -50

BYTE_TO_INT
The function BYTE_TO_INT generates an INT number from a byte
(Standard Functions).

byte_to_int.bmp

Fig. 12-6: Standard function BYTE_TO_INT

byte_1 int_1

0000 0000 0

0000 0001 1

....

1111 1111 255

Fig. 12-7: Value assignment BYTE_TO_INT

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

WinPCL 06VRS Functions in WinPCL 12-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

BYTE_TO_SINT
The function BYTE_TO_SINT generates a SINT number from a byte
(Standard Functions).

byte_to_sint.bmp

Fig. 12-8: Standard function BYTE_TO_SINT

byte_1 sint_1

0000 0000 0

0000 0000 1

... ...

0111 1111 127

1000 0000 -128

... ...

1111 1111 -1

Fig. 12-9: Value assignment BYTE_TO_SINT

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

BYTE_TO_USINT
The function BYTE_TO_USINT generates a USINT number from a byte
(Standard Functions).

byte_to_usint.bmp

Fig. 12-10: Standard function BYTE_TO_USINT

byte_1 usint_1

0000 0000 0

0000 0001 1

... ...

1111 1111 255

Fig. 12-11: Value assignment BYTE_TO_USINT

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

12-6 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

BYTE_BCD_TO_INT
The function BYTE_BCD_TO_INT converts a BCD-coded word into an
INT number (Standard Functions).

In this conversion the half-bytes are converted separately and the result is
overlaid.

byte_bcd_to_int.bmp

Fig. 12-12: Standard function BYTE_BCD_TO_INT

byte_1 int_1

0000 0000 0

0000 0001 1

... ...

0000 1001 9

0000 1010 Invalid

... ...

0000 1111 Invalid

0001 0000 10

... ...

1001 1001 99

and further Invalid

Fig. 12-13: Value assignment BYTE_BCD_TO_INT

The result is invalid if one of the half-bytes has one of the following
assignments:

 1010, 1011, 1100, 1101, 1110, 1111.

Error message

S#ErrorFlg: 1, S#ErrorNr: 4, S#ErrorTyp: -51

WinPCL 06VRS Functions in WinPCL 12-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CHAR_TO_BYTE
The function CHAR_TO_BYTE converts any character of the extended
ASCII character set into a byte (Standard Functions).

char_to_byte.bmp

Fig. 12-14: Standard function CHAR_TO_BYTE

char_1 byte_1

... ...

’1’ 0011 0001

... ...

’z’ 0111 1010

Fig. 12-15: Value assignment CHAR_TO_BYTE

Note: Any character can be provided in the manner ’$00’ to ’$FF’.
How to represent characters see also section >>Character
String Literals<< in chapter "Data Types in WinPCL".

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

DINT_TO_DWORD
The function DINT_TO_DWORD generates a DWORD from a DINT
number (Standard Functions).

dint_to_dword.bmp

Fig. 12-16: Standard function DINT_TO_DWORD

dint_1 dword_1

-2147483648 16#8000 0000

... ...

-1 16#FFFF FFFF

0 16#0000 0000

1 16#0000 0001

... ...

2147483647 16#7FFF FFFF

Fig. 12-17: Value assignment DINT_TO_DWORD

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

12-8 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

DINT_TO_INT
The function DINT_TO_INT generates an INT number from a DINT
number (Standard Functions).

dint_to_int.bmp

Fig. 12-18: Standard function DINT_TO_INT

dint_1 int_1 Error message

-2147483648 Invalid S#ErrorFlg: 1

... ... S#ErrorNr: 3

-32769 Invalid S#ErrorTyp: -154

-32768 -32768 S#ErrorFlg: 0

... ... S#ErrorNr: 0

32767 32767 S#ErrorTyp: 0

32768 Invalid S#ErrorFlg: 1

... ... S#ErrorNr: 2

2147483647 Invalid S#ErrorTyp: -154

Fig. 12-19: Value assignment DINT_TO_INT

DINT_TO_UDINT
The function DINT_TO_UDINT converts a DINT number into a UDINT
number. Negative input numbers will cause an error (Standard Functions).

dint_to_duint.bmp

Fig. 12-20: Standard function DINT_TO_UDINT

dint_1 udint_1 Error message

-2147483648 Invalid S#ErrorFlg: 1

... ... S#ErrorNr: 3

-1 Invalid S#ErrorTyp: -171

0 0 S#ErrorFlg: 0

... ... S#ErrorNr: 0

2147483647 2147483647 S#ErrorTyp: 0

Fig. 12-21: Value assignment DINT_TO_UDINT

WinPCL 06VRS Functions in WinPCL 12-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

DINT_TO_REAL
The function DINT_TO_REAL converts the data type DINT into REAL
(Standard Functions).

dint_to_real.bmp

Fig. 12-22: Standard function DINT_TO_REAL

dint_1 real_1

-2147483648 -2147483648.0

... ...

0 0.0

... ...

2147483647 2147483647.0

Fig. 12-23: Value assignment DINT_TO_REAL

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

Note: The sign ”+” is generally not indicated.

The numerical notation is optimized after maximum resolution.

DINT_TO_TIME
The function DINT_TO_TIME converts a double INTEGER value with the
millisecond unit into a time value (Standard Functions).

Odd values for the indication of milliseconds are rounded up to the next
even value.

 (INTEGER for milliseconds 1, time value TIME T#2ms)

dint_to_time.bmp

Fig. 12-24: Standard function DINT_TO_TIME

12-10 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

dint_1 time_1 Error message

-2147483648 Invalid S#ErrorFlg: 1

... ... S#ErrorNr: 3

-1 Invalid S#ErrorTyp: -156

0 0 ms S#ErrorFlg: 0

... ... S#ErrorNr: 0

2073599998 23d23h59m59s998ms S#ErrorTyp: 0

2073599999 Invalid S#ErrorFlg: 1

... ... S#ErrorNr: 2

2147483647 Invalid S#ErrorTyp: -156

Fig. 12-25: Value assignment DINT_TO_TIME

DWORD_TO_DINT
The function DWORD_TO_DINT generates a DINT number from a
DWORD (Standard Functions).

dword_to_dint.bmp

Fig. 12-26: Standard function DWORD_TO_REAL

 dword_1 dint_1

16# 8000 0000 -2147483648

... ...

16# FFFF FFFF -1

16# 0000 0000 0

16# 7FFF FFFF 2147483647

Fig. 12-27: Value assignment DWORD_TO_DINT

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

WinPCL 06VRS Functions in WinPCL 12-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

DWORD_TO_REAL
The function DWORD_TO_REAL interprets the bit pattern of a DWORD as
REAL number (Standard Functions).

dword_to_real.bmp

Fig. 12-28: Standard function DWORD_TO_REAL

dword_1 real_1 Error message

16# FFFF FFFF...16#FF7F FFFE Invalid S#ErrorFlg: 1

S#ErrorNr : 2

S#ErrorTyp: -237

16#FF7F FFFD...16#80800005 Valid number

16#80800004 ... 16#80000001 Invalid S#ErrorFlg: 1

S#ErrorNr : 3

S#ErrorTyp: -237

16#80000000, 16#00000000 0.000

16#00000001...16#00800004 Invalid S#ErrorFlg: 1

S#ErrorNr : 3

S#ErrorTyp: -237

16#00800005...16#7F7FFFFD Valid number

16#7F7FFFFE...16#7FFFFFFF Invalid S#ErrorFlg: 1

S#ErrorNr : 2

S#ErrorTyp: -237

Fig. 12-29: Value assignment DWORD_TO_REAL

Note: The sign "+" is generally not indicated.

The numerical notation is optimized after maximum resolution.

12-12 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

GRAY_TO_BYTE
The function GRAY_TO_BYTE deletes the high-order half-byte of the input
variable and converts the low-order half-bate according to the table below
(Standard Functions).

gray_to_byte.bmp

Fig. 12-30: Standard function GRAY_TO_BYTE

byte_1 byte_2

**** 0000 0000 0000

**** 0001 0000 0001

**** 0010 0000 0011

**** 0011 0000 0010

**** 0100 0000 0111

**** 0101 0000 0110

**** 0110 0000 0100

**** 0111 0000 0101

**** 1000 0000 1111

**** 1001 0000 1110

**** 1010 0000 1100

**** 1011 0000 1101

**** 1100 0000 1000

**** 1101 0000 1001

**** 1110 0000 1011

**** 1111 0000 1010

Fig. 12-31: Value assignment GRAY_TO_BYTE

****: An assignment unequal to 0000 results in an error message:

S#ErrorFlg: 1, S#ErrorNr: 4, S#ErrorTyp: -49

INT_TO_BCD_WORD
The function INT_TO_BCD_WORD generates a BCD-coded word from an
INT number (Standard Functions).

int_to_bcd_word.bmp

Fig. 12-32: Standard function INT_TO_BCD_WORD

WinPCL 06VRS Functions in WinPCL 12-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Int_1 word_1 Error message

-32768 Invalid S#ErrorFlg: 1

... S#ErrorNr: 3

-1 Invalid S#ErrorTyp: -57

0 0000 0000 0000 0000 S#ErrorFlg: 0

1 0000 0000 0000 0001 S#ErrorNr: 0

... S#ErrorTyp: 0

9999 1001 1001 1001 1001

10000 Invalid S#ErrorFlg: 1

... ... S#ErrorNr: 2

32767 Invalid S#ErrorTyp: -57

Fig. 12-33: Value assignment INT_TO_BCD_WORD

INT_TO_BYTE
The function INT_TO_BYTE generates a byte from an INT number
(Standard Functions).

int_to_byte.bmp

Fig. 12-34: Standard function INT_TO_BYTE

int_1 byte_1 Error message

-32768 Invalid S#ErrorFlg: 1

... ... S#ErrorNr: 4

-1 Invalid S#ErrorTyp: -55

0 0000 0000 S#ErrorFlg: 0

1 0000 0001 S#ErrorNr: 0

... S#ErrorTyp: 0

255 1111 1111

256 Invalid S#ErrorFlg: 1

.... ... S#ErrorNr: 4

32767 Invalid S#ErrorTyp: -55

Fig. 12-35: Value assignment INT_BYTE

12-14 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

INT_TO_DINT
The function INT_TO_DINT generates a DINT number from an INT
number (Standard Functions).

int_to_dint.bmp

Fig. 12-36: Standard function INT_TO_DINT

int_1 dint_1

-32768 -32768

... ...

32767 32767

Fig. 12-37: Value assignment INT_TO_DINT

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

INT_TO_SINT
The function INT_TO_SINT reduces an INT number to a SINT number
(Standard Functions).

int_to_sint.bmp

Fig. 12-38: Standard function INT_TO_SINT

int_1 sint_1 Error message

-32768 Invalid S#ErrorFlg: 1

... ... S#ErrorNr: 3

-129 Invalid S#ErrorTyp: -229

-128 -128 S#ErrorFlg: 0

0 0 S#ErrorNr: 0

127 127 S#ErrorTyp: 0

128 Invalid S#ErrorFlg: 1

... ... S#ErrorNr: 2

32767 Invalid S#ErrorTyp: -229

Fig. 12-39: Value assignment INT_TO_SINT

WinPCL 06VRS Functions in WinPCL 12-15

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

INT_TO_STRING
The function INT_TO_STRING converts an INT number into a character
string (STRING) (Standard Functions).

int_to_string.bmp

Fig. 12-40: Standard function INT_TO_STRING

int_1 string_1

-32768 ’-32768’

0 ’0’

32767 ’32767’

Fig. 12-41: Value assignment INT_TO_STRING

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

INT_TO_UINT
The function INT_TO_UINT converts an INT number into an unsigned
UINT number (Standard Functions).

int_to_uint.bmp

Fig. 12-42: Standard function INT_TO_UINT

int_1 uint_1 Error message

-32768 Invalid S#ErrorFlg: 1

... ... S#ErrorNr: 3

-1 Invalid S#ErrorTyp: -233

0 0 S#ErrorFlg: 0

... ... S#ErrorNr: 0

32767 32767 S#ErrorTyp: 0

Fig. 12-43: Value assignment INT_TO_UINT

12-16 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

INT_TO_USINT
The function INT_TO_USINT generates a USINT number from an INT
number (Standard Functions).

int_to_usint.bmp

Fig. 12-44: Standard function INT_TO_USINT

int_1 usint_1 Error message

-32768 Invalid S#ErrorFlg: 1

... ... S#ErrorNr: 3

-1 Invalid S#ErrorTyp: -59

0 0 S#ErrorFlg: 0

... ... S#ErrorNr: 0

255 255 S#ErrorTyp: 0

256 Invalid S#ErrorFlg: 1

... ... S#ErrorNr: 2

32767 Invalid S#ErrorTyp: -59

Fig. 12-45: Value assignment INT_TO_USINT

INT_TO_WORD
The function INT_TO_WORD generates a word from an INT number
(Standard Functions).

int_to_word.bmp

Fig. 12-46: Standard function INT_TO_WORD

int_1 word_1

-32768 1000 0000 0000 0000

-32767 1000 0000 0000 0001

....

-1 1111 1111 1111 1111

0 0000 0000 0000 0000

1 0000 0000 0000 0001

....

32767 0111 1111 1111 1111

Fig. 12-47: Value assignment INT_TO_WORD

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

WinPCL 06VRS Functions in WinPCL 12-17

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

REAL_TO_DINT
If possible, the function REAL_TO_DINT converts a REAL number into a
DINT number (Standard Functions).

Also see the description under DWORD_TO_REAL.

real_to_dint.bmp

Fig. 12-48: Standard function REAL_TO_DINT

dword_1 real_1 dint_1

16#FFFFFFFF..16#FF7FFFFE invalid invalid

16#FF7FFFFD..16#CF000001 <-2147483648 invalid, (TRUE/3/-166)

16#CF000001..16#80800005 -2147483648..0 -2147483648..0

16#80800004..16#80000001 invalid invalid

16#80000000, 16#00000000 0.000 0

16#00000001..16#00800004 invalid invalid

16#00800005..16#4EFFFFFF 0..2147483520 0..2147483520 (1

16#4F000000..16#7F7FFFFD >2147483647 invalid (TRUE/2/-166)

16#7F7FFFFE..16#7FFFFFFF invalid invalid

Fig. 12-49: Value assignment REAL_TO_DINT

(TRUE/3/-166): S#ErrorFlg/S#ErrorNr/S#ErrorTyp

(TRUE/2/-166): S#ErrorFlg/S#ErrorNr/S#ErrorTyp

(1: due to rounding less than 2147483647

Note: Only seven-digit values (e.g. 1234567.00, 1234.567,
123.45670 E+4) can be entered as input values for the FN
REAL_TO_DINT. However, the above-mentioned multi-digit
values can be indicated as output of the function
DWORD_TO_REAL.

If the ’.’ to indicate a REAL number is forgotten, ’0’ is
automatically added.

12-18 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

REAL_TO_STRING
The function REAL_TO_STRING converts a REAL number into a text
(Standard Functions).

Also see the description under DWORD_TO_REAL.

real_to_string.bmp

Fig. 12-50: Standard function REAL_TO_STRING

dword_1 real_1 string_1

16#FFFFFFFF..16#FF7FFFFE invalid invalid

16#FF7FFFFD..16#80800005 valid number ’-
340282306073709660000000
000000000000000.0...’ ...
’-0.0000000000000000’

16#80800004..16#80000001 invalid invalid

16#80000000, 16#00000000 0.000 ’0.0000000000000000’

16#00000001..16#00800004 invalid invalid

16#00800005..16#7F7FFFFD valid number ’0.0000000000000000’ ...
’340282306073709660000000
000000000000000.000000000
0000000

16#7F7FFFFE..16#7FFFFFFF invalid invalid

Fig. 12-51: Value assignment REAL_TO_STRING

Errors can not occur in case of input of a valid REAL number.

S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

Note: Only seven-digit values (e.g. 1234567.00, 1234.567,
123.45670 E+4) can be entered as input values for the FN
REAL_TO_STRING. However, the above-mentioned multi-
digit values can be indicated as output of the function
DWORD_TO_REAL.

If the ’.’ to indicate a REAL number is forgotten, ’0’ is
automatically added.

WinPCL 06VRS Functions in WinPCL 12-19

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

REAL_TO_DWORD
The function REAL_TO_DWORD expresses the bit pattern of a REAL
number as DWORD (Standard Functions).

Also see the description under DWORD_TO_REAL.

real_to_dword.bmp

Fig. 12-52: Standard function REAL_TO_DWORD

dword_1 real_1 dword_2

16#FFFFFFFF..16#FF7FFFFE invalid invalid

16#FF7FFFFD..16#80800005 valid number 16#FF7FFFFD..16#80800005

16#80800004..16#80000001 invalid invalid

16#80000000, 16#00000000 0.000 16#00000000

16#00000001..16#00800004 invalid invalid

16#00800005..16#7F7FFFFD valid number 16#00800005..16#7F7FFFFD

16#7F7FFFFE..16#7FFFFFFF invalid invalid

Fig. 12-53: Value assignment REAL_TO_DWORD

Errors are not possible, if valid REAL numbers are applied to the input of
the function:

S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

Note: Only seven-digit values (e.g. 1234567.00, 1234.567,
123.45670 E+4) can be entered as input values for the FN
REAL_TO_DWORD. However, the above-mentioned multi-
digit values can be indicated as output of the function
DWORD_TO_REAL.

If the ’.’ to indicate a REAL number is forgotten, ’0’ is
automatically added.

12-20 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

SINT_TO_BYTE
The function SINT_TO_BYTE expresses a SINT number as a byte
(Standard Functions).

sint_to_byte.bmp

Fig. 12-54: Standard function SINT_TO_BYTE

sint_1 byte_1

0 0000 0000

1 0000 0001

...

127 0111 1111

-128 1000 0000

... ...

-1 1111 1111

Fig. 12-55: Value assignment SINT_TO_BYTE

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

SINT_TO_INT
The function SINT_TO_INT expresses a SINT number as an INT number
(Standard Functions).

sint_to_int.bmp

Fig. 12-56: Standard function SINT_TO_INT

sint_1 int_1

-128 -128

.. ...

-1 -1

0 0

1 1

... ...

127 127

Fig. 12-57: Value assignment SINT_TO_INT

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

WinPCL 06VRS Functions in WinPCL 12-21

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

STRING_TO_INT
The function STRING_TO_INT converts a character string (STRING) into
an INT number (Standard Functions).

string_to_int.bmp

Fig. 12-58: Standard function STRING_TO_INT

string_1 int_1 Error message

’-999999’ Invalid S#ErrorFlg: 1

... ... S#ErrorNr: 3

’-32769’ Invalid S#ErrorTyp: -141

’-32768’ -32768 S#ErrorFlg: 0

... ... S#ErrorNr: 0

’32767’ 32767 S#ErrorTyp: 0

’32768’ Invalid S#ErrorFlg: 1

.... S#ErrorNr: 2

’9999999’ Invalid S#ErrorTyp: -141

’paul’ Invalid S#ErrorFlg: 1

S#ErrorNr: 4

S#ErrorTyp: -141

Fig. 12-59: Value assignment STRING_TO_INT

An empty STRING is converted into INT 0 without error message.

STRING_TO_REAL
The function STRING_TO_REAL converts a character string (STRING)
into a REAL number (Standard Functions).

string_to_real.bmp

Fig. 12-60: Standard function STRING_TO_REAL

12-22 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

string_1 real_1 Error

’’ (empty) 0.000

’paul’ Invalid (TRUE/1/-167)

’-3.40282E+48’ Invalid, expression out of range (TRUE/2/-167)

’-3.40282E+38’ -340282103249613620000000000000000
 000000.000

’-1.07374E+08’ -107374000.000

’-1.40130E-45’ 0.000

0.00000E+00’ 0.000

’0.0’ 0.0

’1.40130E-45’ 0.000

’1.07374E+08’ 107374000.000

’3.40282E+38’ 3402821032496136200000000000000000
00000.000

’3.40282E+48’ Invalid, expression out of range (TRUE/2/-167)

Fig. 12-61: Value assignment STRING_TO_REAL

(TRUE/1/-167): S#ErrorFlg/S#ErrorNr/S#ErrorTyp

Note: The sign "+" is generally not indicated.

UDINT_TO_DINT
The function UDINT_TO_DINT converts a UDINT number into a DINT
number (Standard Functions).

udint_to_dint.bmp

Fig. 12-62: Standard function UDINT_TO_DINT

udint_1 dint_1 Error message

0 0 S#ErrorFlg: 0

... S#ErrorNr: 0

2147483647 2147483647 S#ErrorTyp: 0

Error

2147483648 Invalid S#ErrorFlg: 1

... S#ErrorNr: 2

4294967295 Invalid S#ErrorTyp: -172

Fig. 12-63: Value assignment UDINT_TO_DINT

WinPCL 06VRS Functions in WinPCL 12-23

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

USINT_TO_BYTE
The function USINT_TO_BYTE generates a byte from a USINT number
(Standard Functions).

usint_to_byte.bmp

Fig. 12-64: Standard function USINT_TO_BYTE

usint_1 byte_1

0 0000 0000

1 0000 0001

... ...

255 1111 1111

Fig. 12-65: Value assignment USINT_TO_BYTE

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

USINT_TO_INT
The function USINT_TO_INT generates an INT number from a USINT
number (Standard Functions).

usint_to_int.bmp

Fig. 12-66: Standard function USINT_TO_INT

usint_1 int_1

0 0

1 1

... ...

255 255

Fig. 12-67: Value assignment USINT_TO_INT

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

12-24 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

UINT_TO_INT
The function UINT_TO_INT attempts to express a UINT number as an
INT number (Standard Functions).

uint_to_int.bmp

Fig. 12-68: Standard function UINT_TO_INT

uint_1 int_1 Error message

0 0 S#ErrorFlg: 0

1 1 S#ErrorNr: 0

... ... S#ErrorTyp: 0

32767 32767

Error

32768 Invalid S#ErrorFlg: 1

... ... S#ErrorNr: 2

65535 Invalid S#ErrorTyp: -232

Fig. 12-69: Value assignment UINT_TO_INT

UINT_TO_WORD
The function UINT_TO_WORD expresses a UINT number as a WORD
(Standard Functions).

uint_to_word.bmp

Fig. 12-70: Standard function UINT_TO_WORD

uint_1 word_1

0 0000 0000 0000 0000

1 0000 0000 0000 0001

.....

255 0000 0000 1111 1111

....

65535 1111 1111 1111 1111

Fig. 12-71: Value assignment UINT_TO_WORD

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

WinPCL 06VRS Functions in WinPCL 12-25

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

TIME_TO_DINT
The function TIME_TO_DINT converts a time value into a double
INTEGER value of the milliseconds unit (Standard Functions).

time_to_dint.bmp

Fig. 12-72: Standard function TIME_TO_DINT

time_1 dint_1 Error message

0ms 0 S#ErrorFlg: 0

... ... S#ErrorNr: 0

23d23h59m59s999ms 2073599998 S#ErrorTyp: 0

Error

> 23d23h59m59s999ms Invalid S#ErrorFlg: 1

S#ErrorNr: 2

S#ErrorTyp: -157

Fig. 12-73: Value assignment TIME_TO_DINT

WORD_BCD_TO_INT
The function WORD_BCD_TO_INT converts a BCD-coded word into an
INT number (Standard Functions).

In this conversion the half-bytes are converted separately and the result is
overlaid.

The result is invalid if one of the half-bytes has one of the following
assignments:

 1010, 1011, 1100, 1101, 1110, 1111.

Error message

S#ErrorFlg: 1, S#ErrorNr: 4, S#ErrorTyp: -52

word_bcd_to_int.bmp

Fig. 12-74: Standard function WORD_BCD_TO_INT

12-26 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

word_1 int_1

0000 0000 0000 0000 0

0000 0000 0000 0001 1

...

0000 0000 0000 1001 9

0000 0000 0000 1010 Invalid

... ...

0000 0000 0000 1111 Invalid

0000 0000 0001 0000 10

... ...

1001 1001 1001 1001 9999

And further Invalid

Fig. 12-75: Value assignments WORD_BCD_TO_INT

WORD_TO_INT
The function WORD_TO_INT generates an INT number from a word
(Standard Functions).

word_to_int.bmp

Fig. 12-76: Standard function WORD_TO_INT

word_1 int_1

0000 0000 0000 0000 0

0000 0000 0000 0001 1

...

0111 1111 1111 1111 32767

1000 0000 0000 0000 -32768

1000 0000 0000 0001 -32767

... ...

1111 1111 1111 1111 -1

Fig. 12-77: Value assignments WORD_TO_INT

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0.

WinPCL 06VRS Functions in WinPCL 12-27

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WORD_TO_UINT
The function WORD_TO_UINT generates a UINT number from a word
(Standard Functions).

word_to_uint.bmp

Fig. 12-78: Standard function WORD_TO_UINT

word_1 uint_1

0000 0000 0000 0000 0

0000 0000 0000 0001 1

... ...

0111 1111 1111 1111 32767

1000 0000 0000 0000 32768

... ...

1111 1111 1111 1111 65535

Fig. 12-79: Value assignments WORD_TO_UINT

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

12-28 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Numeric Functions
Numeric functions are implemented as a supplement to the numerical
operations ADD, SUB, MUL, DIV, MOD (Standard Functions).

ABS_INT
As result, the numerical function ABS_INT returns the value of the integer
number applied to the input (Standard Functions).

abs_int.bmp

Fig. 12-80: Standard function ABS_INT

int_1 int_2 Error message

32767 32767 S#ErrorFlg: 0

... ... S#ErrorNr: 0

-32767 32767 S#ErrorTyp: 0

Error

-32768 Invalid S#ErrorFlg: 1

S#ErrorNr: 2

S#ErrorTyp: -69

Fig. 12-81: Value assignments ABS_INT

SIGN_INT
As result, the numerical function SIGN_INT returns the sign of the integer
number applied to the input (Standard Functions).

Note: Only available for INT!

sign_int.bmp

Fig. 12-82: Standard function SIGN_INT

int_1 bool_1

-35 0

0 1

+35 1

Fig. 12-83: Value assignments SIGN_INT

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

WinPCL 06VRS Functions in WinPCL 12-29

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

SQRT_REAL
The numerical function SQRT_REAL determines the square root of the
REAL number applied to the input (Standard Functions).

sqrt_real.bmp

Fig. 12-84: Standard function SQRT_REAL

real_1 real_2 S#ErrorTyp S#ErrorNr S#ErrorFlg

-1.0 Invalid -270 1 1

0.0 0.0 0 0 0

1.0 1.0 0 0 0

2.0 1.414 0 0 0

12.0 3.464 0 0 0

81.0 9.0 0 0 0

Fig. 12-85: Value assignments SQRT_REAL

LN_REAL
The numeric function LN_REAL determines the natural logarithm to the
REAL number applied to the input (Standard Functions).

ln_real.bmp

Fig. 12-86: Standard function LN_REAL

real_1 real_2 S#ErrorTyp S#ErrorNr S#ErrorFlg

-1.0 Invalid -271 1 1

0.0 Invalid -271 1 1

1.0 0.0 0 0 0

2.0 0.693 0 0 0

3.0 1.099 0 0 0

100.0 4.605 0 0 0

Fig. 12-87: Value assign-ments LN_RAL

12-30 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

LOG_REAL
The numeric function LOG_REAL determines the common logarithm to
the REAL number applied to the input (Standard Functions).

log_real.bmp

Fig. 12-88: Standard function LOG_REAL

real_1 real_2 S#ErrorTyp S#ErrorNr S#ErrorFlg

-1.0 0.0 -272 1 1

0.0 0.0 -272 1 1

1.0 0.0 0 0 0

2.0 0.301 0 0 0

3.0 0.477 0 0 0

100.0 2.0 0 0 0

Fig. 12-89: Value assignments LOG_REAL

EXP_REAL
The numeric function EXP_REAL determines the exponential value of the
REAL number (Base "e") applied to the input (Standard Functions).

exp_real.bmp

Fig. 12-90: Standard function EXP_REAL

real_1 real_2 S#ErrorTyp S#ErrorNr S#ErrorFlg

-1.0 0.368 0 0 0

0.0 1.0 0 0 0

1.0 2.718 0 0 0

2.0 7.389 0 0 0

3.0 20.086 0 0 0

100.0 Invalid Invalid Invalid Invalid

Fig. 12-91: Value assignments EXP_REAL

Note: The range of real numbers of the result is exceeded for input
values higher than 88. Check required!

WinPCL 06VRS Functions in WinPCL 12-31

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

SIN_REAL
The numeric function SIN_REAL determines the SIN to the REAL number
applied to the input (input value in radian measure (Standard Functions).

sin_real.bmp

Fig. 12-92: Standard function SIN-REAL

real_1 real_2

-30° -0.524 -0.5

0° 0.0 0.0

30° 0.524 0.5

45° 0.785 0.707

60° 1.047 0.866

90° 1.571 1.0

120° 2.094 0.866

Fig. 12-93: Value assignments SIN_REAL

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

COS_REAL
The numeric function COS_REAL determines the COS to the REAL
number applied to the input (input value in radian measure) (Standard
Functions).

cos_real.bmp

Fig. 12-94: Standard function COS_REAL

real_1 real_2

-30° -0.524 0.868

0° 0.0 1.0

30° 0.524 0.868

45° 0.785 0.707

60° 1.047 0.5

90° 1.571 0.0

120° 2.094 -0.5

Fig. 12-95: Value assignments COS_REAL

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

12-32 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

TAN_REAL
The numeric function TAN_REAL determines the TAN to the REAL
number applied to the input (input value in radian measure) (Standard
Functions).

tan_real.bmp

Fig. 12-96: Standard function TAN_REAL

real_1 real_2

-30° -0.524 -0.577

0° 0.0 0.0

30° 0.524 0.577

45° 0.785 1.0

60° 1.047 1.732

90° 1.571 very high

120° 2.094 -1.732

Fig. 12-97: Value assignments TAN_REAL

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

ASIN_REAL
The numeric function ASIN_REAL determines the main value to the
REAL number applied to the input (Standard Functions).

asin_real.bmp

Fig. 12-98: Standard function ASIN_REAL

real_1 real_2

-0.5 -0.524 -30°

0.0 0.0 0°

0.5 0.524 30°

0.707 0.785 45°

0.866 1.047 60°

1.0 1.571 90°

Fig. 12-99: Value assignments ASIN_REAL

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

WinPCL 06VRS Functions in WinPCL 12-33

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ACOS_REAL
The numeric function ACOS_REAL determines the main value to the
REAL number applied to the input (Standard Functions).

acos_real.bmp

Fig. 12-100: Standard function ACOS_REAL

real_1 real_2

1.0 0.0 0°

0.868 0.524 30°

0.707 0.785 45°

0.5 1.047 60°

0.0 1.571 90°

-0.5 2.094 120°

Fig. 12-101: Value assignments ACOS_REAL

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

ATAN_REAL
The numeric function ATAN_REAL determines the main value to the
REAL number applied to the input (Standard Functions).

Note: Only available for REAL numbers!

atan_real.bmp

Fig. 12-102: Standard function ATAN_REAL

real_1 real_2

-0.577 -0.524 -30°

0.0 0.0 0°

0.577 0.524 30°

1.0 0.785 45°

1.732 1.047 60°

Very great
value

1.571 90°

Fig. 12-103: Value assignments ATAN_REAL

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

12-34 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Functions for Time-to-Integer Conversion

TIME_DAY, TIME_HOUR, TIME_MIN, TIME_SEC,
TIME_MS
By means of the functions:

TIME_DAY, TIME_HOUR, TIME_MIN, TIME_SEC, TIME_MS

a variable of the TIME data type is split into integer values (Standard
Functions).

The function MAKETIME takes five integer values for day, hour, minute,
second, and millisecond to generate a time value.

Conversion of TIME unit day to INTEGER

time_day.bmp

Fig. 12-104: Conversion of TIME unit day to INTEGER

time_hour.bmp

Fig. 12-105: Conversion of TIME unit hour to INTEGER

time_min.bmp

Fig. 12-106: Conversion of TIME unit minute to INTEGER

time_sec.bmp

Fig. 12-107: Conversion of TIME unit second to INTEGER

time_ms.bmp

Fig. 12-108: Conversion of TIME unit millisecond to INTEGER

WinPCL 06VRS Functions in WinPCL 12-35

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Name Type Comment

TIME_ TIME; Time value to be converted

Function value INT; According to day, hour, minute, second,
millisecond function

Operation of time-to-integer conversion

A time value is delivered to the functions TIME_DAY, TIME_HOUR,
TIME_MIN, TIME_SEC and TIME_MS. Depending on the function, the
corresponding day, hour, minute, second or millisecond content is taken
from the time value and provided as an integer value at the function
output.

Error handling for time-to-integer conversion

The functions TIME_DAY, TIME_HOUR, TIME_MIN, TIME_SEC and
TIME_MS do not generate any errors.

S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

Examples of time-to-integer conversions

The execution time of a cycle is stored in the variable CYCLTIME. This
time value is to be reduced to minutes and seconds and stored in the
MCYCLMIN and MCYCLSEC variables.

Zyklus_Bsp.bmp

Fig. 12-109: Examples of time-to-integer conversions

CycleTime McycleMin McycleSec

T#2m15s150ms 2 15

T#1m59s820ms 1 59

12-36 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

INTEGER-to-TIME Conversion

MAKETIME
The function MAKETIME converts the integer values for day, hour, minute,
second, and millisecond into a time value. The input values are summed up
according to their unit. If input values are negative or if the maximum time
value is exceeded, the function generates an error (Standard Functions).

maketime.bmp

Fig. 12-110:Compose time value

Name Type Comment

DAY: INT; Day

HOUR: INT; Hour

MIN: INT; Minute

SEC: INT; Second

MS: INT; Millisecond

Function result TIME Converted time value

Function result

= MS + 1000 * (SEC + 60 * (MIN + 60 * (HOUR + 24 * DAY)

Error handling

As a result of programming errors, the MAKETIME function may be
performed with integer values which are above the time range capable of
being represented. In such a case, error handling reports the cause of the
error.

Error type of the function blocks

MAKETIME conversion

MAKETIME: 210

Error numbers

Error No. Meaning

1 Invalid input parameters
The DAY, HOUR, MIN, SEC or MS inputs have negative values.

2 Range is exceeded
The sum of the DAY, HOUR, MIN, SEC and MS inputs exceeds
the maximum time value T#23d23h59m59s999ms.

WinPCL 06VRS Functions in WinPCL 12-37

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Examples of integer-to-time conversions

The monitoring time for the processing duration of the individual stations
runs in a data carrier. The information is stored as integer values for
minutes and seconds. The data carrier is read and a time value is
generated from the data for minutes and seconds. The time value serves
as a preset value for the monitoring timer.

Ueberwachung_Bsp.bmp

Fig. 12-111: Examples of integer-to-time conversions

MDATMIN MDATSEC MCYCLSEC

15 30 T#15m30s

0 125 T#2m5s

-1 0 T#0s ->
S#ErrorFlg = TRUE
S#ErrorNr = 1
S#ErrorTyp = -210

12-38 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Bit String Functions
Bit string functions SHL_BYTE, SHL_WORD, SHL_DWORD serve as a
supplement to the following operations:

• :=

• AND

• OR, XOR

SHL_BYTE, SHL_WORD, SHL_DWORD, SHL_LWORD
The bit string functions

• SHL_BYTE,

• SHR_WORD and

• SHL_DWORD

• SHL_LWORD, in preparation

permit that the bit string applied to the upper function input be shifted to
the left bit by bit (Standard Functions).

The bit at the outer left is lost. The free bits are filled with 0.

The number of shift register clock pulses is defined by the second input
(type INT).

No less than 0 and no more than (k-1) shift register clock pulses are
permitted for a variable of k-bit width.

A negative number of shift register clock pulses or a number greater than
(k-1) result in the command not being performed and in the error variables
S#ErrorFlg, S#ErrorNr and S#ErrorTyp being set.

shl_byte.bmp

Fig. 12-112: Shifting a byte to the left bit by bit

Permitted are: 0 = int_1 = 7

byte_1 int_1 byte_2 Error message

00000000 0 ... 7 00000000 S#ErrorFlg: 0

 ... 0 ... 7 ... S#ErrorNr: 0

11001001 3 01001000 S#ErrorTyp: 0

11001001 4 10010000

11111111 0 ... 7 ...

Error

Any Negative Invalid S#ErrorFlg: 1

Any > 7 Invalid S#ErrorNr: 1

S#ErrorTyp: -70

Fig. 12-113: Value assignment SHL_BYTE

WinPCL 06VRS Functions in WinPCL 12-39

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Further functions for longer bit strings are as follows:

shl_word.bmp

Fig. 12-114: Shifting a word to the left bit by bit

Permitted are: 0 = int_2 = 15

In case of error S#ErrorTyp: -71, S#ErrorNr:1, S#ErrorFlg: 1

shl_dword.bmp

Fig. 12-115: Shifting a double word to the left bit by bit

Permitted are: 0 = int_2 = 31

In case of error S#ErrorTyp: -159, S#ErrorNr:1, S#ErrorFlg: 1

SHR_BYTE, SHR_WORD, SHR_DWORD, SHR_LWORD
The bit string functions:

• SHR_BYTE,

• SHR_WORD and

• SHR_DWORD

• SHR_LWORD, in preparation

permit that the bit string applied to the upper function input be shifted to
the right bit by bit (Standard Functions).

The bit at the outer right is lost. The free bits are filled with 0.

The number of shift register clock pulses is defined by the second input,
type INT.

No less than 0 and no more than (k-1) shift register clock pulses are
permitted for a variable of k-bit width.

A negative number of shift register clock pulses or a number greater than
(k-1) result in the command not being performed and in the error variables
S#ErrorFlg, S#ErrorNr and S#ErrorTyp being set.

shr_byte.bmp

Fig. 12-116: Shifting a byte to the right bit by bit

12-40 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Permitted are: 0 = int_1 = 7

byte_1 int_1 byte_2 Error message

00000000 0 ... 7 00000000 S#ErrorFlg: 0

 ... 0 ... 7 ... S#ErrorNr: 0

11001001 3 00011001 S#ErrorTyp: 0

11001001 4 00001100

11111111 0 ... 7 ...

Error

Any Negative Invalid S#ErrorFlg: 1

Any > 7 Invalid S#ErrorNr: 1

S#ErrorTyp: -72

Fig. 12-117: Value assignment SHL_BYTE

Further functions for longer bit strings are:

shr_word.bmp

Fig. 12-118: Shifting a word to the right bit by bit

Permitted are: 0 = int_2 = 15

In case of error S#ErrorTyp: -73, S#ErrorNr:1, S#ErrorFlg: 1

shr_dword.bmp

Fig. 12-119: Shifting a double word to the right bit by bit

Permitted are: 0 = int_2 = 31

In case of error S#ErrorTyp: -160, S#ErrorNr:1, S#ErrorFlg: 1

WinPCL 06VRS Functions in WinPCL 12-41

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ROL_BYTE, ROL_WORD, ROL_DWORD, ROL_LWORD
The bit string functions:

• ROL_BYTE

• ROL_WORD and

• ROL_DWORD

• ROL_LWORD, in preparation

permit that the bit string applied to the upper function input be rotated to
the left bit by bit (Standard Functions).

The number of shift register clock pulses is defined by the second input,
type INT.

No less than 0 and no more than (k-1) shift register clock pulses are
permitted for a variable of k-bit width.

A negative number of shift register clock pulses or a number greater than
(k-1) result in the command not being performed and in the error variables
S#ErrorFlg, S#ErrorNr and S#ErrorTyp being set.

The bit at the outer left rotates to the outer right.

rol_byte.bmp

Fig. 12-120: Rotating a byte to the left bit by bit

Permitted are: 0 = int_1 = 7

byte_1 int_1 byte_2 Error message

00000000 0 ... 7 00000000 S#ErrorFlg: 0

 ... 0 ... 7 ... S#ErrorNr: 0

11001001 3 01001110 S#ErrorTyp: 0

11001001 4 10011100

11111111 0 ... 7 ...

Error

Any Negative Invalid S#ErrorFlg: 1

Any > 7 Invalid S#ErrorNr: 1

S#ErrorTyp: -74

Fig. 12-121: Value assignment ROL_BYTE

Further functions for longer bit strings are:

rol_word.bmp

Fig. 12-122: Rotating a word to the left bit by bit

Permitted are: 0 = int_2 = 15

In case of error S#ErrorTyp: -75, S#ErrorNr:1, S#ErrorFlg: 1

12-42 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

rol_dword.bmp

Fig. 12-123: Rotating a double word to the left bit by bit

 Permitted are: 0 = int_2 = 31

In case of error S#ErrorTyp: -161, S#ErrorNr:1, S#ErrorFlg: 1

ROR_BYTE, ROR_WORD, ROR_DWORD, ROR_LWORD
The bit string functions

• ROR_BYTE

• ROR_WORD and

• ROR_DWORD

• ROR_LWORD, in preparation

permit that the bit string applied to the upper function input be rotated to
the right bit by bit (Standard Functions).

The bit at the outer right rotates to the outer left.

The number of shift register clock pulses is defined by the second input,
type INT.

No less than 0 and no more than (k-1) shift register clock pulses are
permitted for a variable of k-bit width.

A negative number of shift register clock pulses or a number greater than
(k-1) result in the command not being performed and in the error variables
S#ErrorFlg, S#ErrorNr and S#ErrorTyp being set.

ror_byte.bmp

Fig. 12-124: Rotating a byte to the right bit by bit

Permitted are: 0 = int_1 = 7

byte_1 int_1 byte_2 Error message

00000000 0 ... 7 00000000 S#ErrorFlg: 0

 ... 0 ... 7 ... S#ErrorNr: 0

11001001 3 00111001 S#ErrorTyp: 0

11001001 4 10011100

11111111 0 ... 7 ...

Error

Any Negative Invalid S#ErrorFlg: 1

Any > 7 Invalid S#ErrorNr: 1

S#ErrorTyp: -76

Fig. 12-125: Value assignment ROR_BYTE

WinPCL 06VRS Functions in WinPCL 12-43

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Further functions for longer bit strings are:

ror_word.bmp

Fig. 12-126: Rotating a word to the right bit by bit

Permitted are: 0 = int_2 = 15

In case of error S#ErrorTyp: -77, S#ErrorNr:1, S#ErrorFlg: 1

ror_dword.bmp

Fig. 12-127: Rotating a double word to the right bit by bit

Permitted are: 0 = int_2 = 31

In case of error S#ErrorTyp: -162, S#ErrorNr:1, S#ErrorFlg: 1

CONCAT_BYTE
The bit string function CONCAT_BYTE concatenates the two applied
bytes to form a word.
The byte at the upper input becomes the high byte, the one at the lower
input the low byte of the word (Standard Functions).

concat_byte.bmp

Fig. 12-128: Standard function CONCAT_BYTE

byte_1 byte_2 word_1

11001001 00110110 1100100100110110

16#C9 16#36 16#C936

Fig. 12-129: Value assignment CONCAT_BYTE

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

12-44 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CONCAT_WORD
The bit string function CONCAT_WORD concatenates the two applied
words to form a double word.
The word at the upper input becomes the high word, the one at the lower
input the low word of the DWORD (Standard Functions).

concat_word.bmp

Fig. 12-130: Standard function CONCAT_WORD

word_1 word_2 dword_1

16#1122 16#3344 16#11223344

Fig. 12-131: Value assignment CONCAT_WORD

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

HIGH_BYTE
The bit string function HIGH_BYTE takes the high-order byte from the
word applied to the input (Standard Functions).

high_byte.bmp

Fig. 12-132: Standard function HIGH_BYTE

 word_1 byte_1

11001001 00110110 11001001

 16#C936 16#C9

Fig. 12-133: Value assignment HIGH_BYTE

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

LOW_BYTE
The bit string function LOW_BYTE takes the low-order byte from the word
applied to the input (Standard Functions).

low_byte.bmp

Fig. 12-134: Standard function LOW_BYTE

word_1 byte_2

11001001 00110110 00110110

 16#C936 16#36

Fig. 12-135: Value assignment LOW_BYTE

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

WinPCL 06VRS Functions in WinPCL 12-45

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

HIGH_WORD
The bit string function HIGH_WORD takes the high-order word from the
double word applied to the input (Standard Functions).

high_word.bmp

Fig. 12-136: Standard function HIGH_WORD

dword_1 word_1

 16#12345678 16#1234

Fig. 12-137: Value assignment HIGH_WORD

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

LOW_WORD
The bit string function LOW_WORD takes the low-order word from the
double word applied to the input (Standard Functions).

low_word.bmp

Fig. 12-138: Standard function LOW_WORD

dword_1 word_2

16#12345678 16#5678

Fig. 12-139: Value assignment LOW_WORD

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

12-46 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Character String Functions
For editing texts, the standard functions for character strings set forth
below are implemented. They are provided as a supplement to the
operations of the STRING data type (Standard Functions).

LEN Determines the length of a character string

LEFT Determines the leftmost L-characters.

RIGHT Determines the rightmost L-characters.

MID Expresses L-characters from TEXT as from position P.

INSERT Inserts TEXT2 in TEXT1 as from position P.

DELETE Deletes L-characters from TEXT as from position P.

REPLACE Replaces L-characters from TEXT1 as from position P.

FIND Seeks TEXT2 in TEXT1, indicates number.

CONCAT_S Adds TEXT2 to TEXT1interruption-free.

The length of the character string can be between 0, empty character string,
and 255.
If the size of the character string variables was limited, the processing starts
from the left. Excess characters are rejected.
Indications of position or length at the inputs of the functions, type INT,
result in an error message (S#ErrorFlg, S#ErrorNr, S#ErrorTyp) if the
possible value is exceeded / fallen short or is in the negative number range.

LEN
The character string function LEN determines the length of a character
string. An error message cannot be emitted (Standard Functions).

len.bmp

Fig. 12-140: Standard function LEN

string_1 int_1

’aBC 3

’’ 0

BC 2

Fig. 12-141: Value assignment LEN

Errors are not possible: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

WinPCL 06VRS Functions in WinPCL 12-47

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

LEFT
The character string function LEFT expresses the leftmost L_characters
(Standard Functions).

left.bmp

Fig. 12-142: Standard function LEFT

string_1 int_1 string_2 Error message

’’ 0 ’’ S#ErrorFlg: 0

’bcdef’ 0 ’’ S#ErrorNr: 0

’bcdef’ 2 ’bc’ S#ErrorTyp: 0

’bcdef’ 5 ’bcdef’

Error

’bcdef’ 6 Invalid, length exceeded S#ErrorFlg: 1

’’ 1 Invalid, length exceeded S#ErrorNr: 1

Any < 0 Invalid, negative length S#ErrorTyp: -143

Fig. 12-143: Value assignment LEFT

Limitation of the length of ‘string_2’ upon declaration:

Name AT TYPE := Comment

string_2 STRING[2] Results character
string

Fig. 12-144: Declaration of string_2

string_1 int_1 string_2 Error message

’bcdef’ 0 ’’ S#ErrorFlg: 0

’bcdef’ 2 ’bc’ S#ErrorNr: 0

’bcdef’ 5 ’bc’ S#ErrorTyp: 0

Fig. 12-145: Value assignment for results character string limited in length

12-48 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

RIGHT
The character string function RIGHT expresses the rightmost
L_characters (Standard Functions).

right.bmp

Fig. 12-146: Standard function RIGHT

string_1 int_1 string_2 Error message

’’ 0 ’’ S#ErrorFlg: 0

’bcdef’ 0 ’’ S#ErrorNr: 0

’bcdef’ 2 ’ef’ S#ErrorTyp: 0

’bcdef’ 5 ’bcdef’

Error

’bcdef’ 6 Invalid, length exceeded S#ErrorFlg: 1

’’ 1 Invalid, length exceeded S#ErrorNr: 1

Any < 0 Invalid, negative length S#ErrorTyp: -144

Fig. 12-147: Value assignment RIGHT

Limitation of the length of ‘string_2’ upon declaration:

Name AT TYPE := Comment

string_2 STRING[2] Results character
string

Fig. 12-148: Declaration of string_2

string_1 int_1 string_2 Error message

’bcdef’ 0 ’’ S#ErrorFlg: 0

’bcdef’ 2 ’ef’ S#ErrorNr: 0

’bcdef’ 5 ’bc’ S#ErrorTyp: 0

Fig. 12-149: Value assignment for results character string limited in length

Note: Length is always limited from the left!!!

WinPCL 06VRS Functions in WinPCL 12-49

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

MID
The character string function MID determines L_characters from position
P_ to the right (Standard Functions).

mid.bmp

Fig. 12-150: Standard function MID

string_1 int_1 int_2 string_2 Error message

’bcdef’ 0 1 ’’ S#ErrorFlg: 0

’bcdef’ 2 1 ’bc’ S#ErrorNr: 0

’bcdef’ 5 1 ’bcdef’ S#ErrorTyp: 0

’bcdef’ 0 2 ’’

’bcdef’ 2 2 ’cd’

Error

’bcdef’ 6 1 Invalid, length exceeded S#ErrorFlg: 1

’bcdef’ 5 2 Invalid, length exceeded S#ErrorNr: 1

’bcdef’ -1 * Invalid, negative length S#ErrorTyp: -145

’bcdef’ * < 1 Invalid, position error

Fig. 12-151: Value assignment MID

Note: Assigning the standard initialized variable int_2:=0 to the
function results in an error!

Limitation of the length of ‘string_2’ upon declaration:

Name AT TYPE := Comment

string_2 STRING[2] Results character
string

Fig. 12-152: Declaration of string_2

string_1 int_1 int_2 string_2 Error message

’bcdef’ 0 1 ’’ S#ErrorFlg: 0

’bcdef’ 2 1 ’bc’ S#ErrorNr: 0

’bcdef’ 5 1 ’bc’ S#ErrorTyp: 0

’bcdef’ 3 2 ’cd’

’bcdef’ 4 2 ’cd’

Fig. 12-153: Value assignment for results character string limited in length

Note: Length is always limited from the left!!!

12-50 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CONCAT_S
The character string function CONCAT_STRING permits the lower
character string to be added to the upper one (Standard Functions).

concat_s.bmp

Fig. 12-154: Standard function CONCAT_S

string_1 string_2 string_3

’’ ’’ ’’

’bcd’ ’’ ’bcd’

’bcd’ ’de’ ’bcdde’

Fig. 12-155: Value assignment CONCAT_S

Limitation of the length of ‘string_3’ upon declaration:

Name AT TYPE := Comment

string_3 STRING[4] Results character
string

Fig. 12-156: Declaration of string_3

string_1 string_2 string_3

’’ ’’ ’’

’bcd’ ’’ ’bcd’

’bcd’ ’de’ ’bcdd’

Fig. 12-157: Value assignment for results character string limited in length

Note: Length is always limited from the left!!!

Note: LEN(string_3) > 255: results in
S#ErrorFlg 1, S#ErrorNr 239, S#ErrorTyp -146
Other errors are not possible!

WinPCL 06VRS Functions in WinPCL 12-51

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

INSERT
The character string function INSERT permits the lower character string
to be inserted after position P_ in the upper character string (Standard
Functions).

insert.bmp

Fig. 12-158: Standard function INSERT

string_1 string_2 int_1 string_3 Error message

’’ ’’ 0 ’’ S#ErrorFlg: 0

’’ ’ef’ 0 ’ef’ S#ErrorNr: 0

’bcd’ ’ef’ 0 ’efbcd’ S#ErrorTyp: 0

’bcd’ ’ef’ 1 ’befcd’

’bcd’ ’ef’ 2 ’bcefd’

’bcd’ ’ef’ 3 bcdef’

Error

* * -1 Invalid, position error S#ErrorFlg: 1

’’ ’ef’ 1 Invalid, length error S#ErrorNr: 1

’bcd’ ’ef’ 4 Invalid, length error S#ErrorTyp: -147

Fig. 12-159: Value assignment INSERT

Note: LEN(string_3) > 255 results in:
S#ErrorFlg 1, S#ErrorNr 239, S#ErrorTyp -147

Limitation of the length of ‘string_3’ upon declaration:

Name AT TYPE := Comment

string_3 STRING[4] Results character
string

Fig. 12-160: Declaration of string_3

string_1 string_2 int_1 string_3 Error message

’bcd’ ’de’ 0 ’debc’ S#ErrorFlg: 0, S#ErrorNr: 0,
S#ErrorTyp: 0

Fig. 12-161: Value assignment for results character string limited in length

Note: Length is always limited from the left!!!

Note: LEN(string_3) > 255: results in
S#ErrorFlg 1, S#ErrorNr 239, S#ErrorTyp -147

12-52 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

DELETE
The character string function DELETE deletes L_characters to the right
from and including position P_ (Standard Functions).

delete.bmp

Fig. 12-162: Standard function DELETE

string_1 int_1 int_2 string_2 Error message

’bcdef’ 0 1 ’bcdef’ S#ErrorFlg: 0

’bcdef’ 1 1 ’cdef’ S#ErrorNr: 0

’bcdef’ 2 1 ’def’ S#ErrorTyp: 0

’bcdef’ 4 1 ’f’

’bcdef’ 5 1 ’’

’bcdef’ 0 2 ’bcdef’

’bcdef’ 1 2 ’bdef’

’bcdef’ 2 2 ’bef’

’bcdef’ 4 2 ’b’

Error

’’ * * Invalid, nothing to delete S#ErrorFlg: 1

* -1 * Invalid, length error S#ErrorNr: 1

* * 0 Invalid, position error S#ErrorTyp: -
148

’bcdef’ 6 1 Invalid, length error

’bcdef’ 5 2 Invalid, length error

Fig. 12-163: Value assignment DELETE

Note: Assigning the standard initialized variable int_2:=0 to the
function results in an error!

Limitation of the length of ‘string_3’ upon declaration:

Name AT TYPE := Comment

string_2 STRING[4] Results character string

Fig. 12-164: Declaration of string_2

string_1 int_1 int_2 string_3 Error message

’bcdef’ 2 1 ’de’ S#ErrorFlg: 0

’bcdef’ 4 1 ’f’ S#ErrorNr: 0

’bcdef’ 2 2 ’be’ S#ErrorTyp: 0

Fig. 12-165: Value assignment for results character string limited in length

Note: Length is always limited from the left!!!

WinPCL 06VRS Functions in WinPCL 12-53

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

REPLACE
The character string function REPLACE causes the L_characters in the
upper character string to be replaced by the lower character string, from
position P (Standard Functions).

replace.bmp

Fig. 12-166: Standard function REPLACE

string_1 string_2 int_1 int_2 string_3 Error message

’bcdef’ ’xyz’ 0 1 ’xyzbcdef’ S#ErrorFlg: 0

’bcdef’ ’xyz’ 2 1 ’xyzdef’ S#ErrorNr: 0

’bcdef’ ’xyz’ 4 1 ’xyzf’ S#ErrorTyp: 0

’bcdef’ ’xyz’ 5 1 ’xyz’

’bcdef’ ’xyz’ 2 2 ’bxyzef’

’bcdef’ ’xyz’ 3 2 ’bxyzf’

’bcdef’ ’xyz’ 4 2 ’bxyz’

’bcdef’ ’xyz’ 0 5 ’bcdefxyz’

Error

’’ * * * Invalid, nothing to
delete

S#ErrorFlg: 1

* * <0 * Invalid, length error S#ErrorNr: 1

* * * <1 Invalid, position error S#ErrorTyp:
-149

’bcdef’ ’xyz’ 6 1 Invalid, length error

’bcdef’ ’xyz’ 5 2 Invalid, length error

Fig. 12-167: Value assignment REPLACE

Note: LEN(string_3) > 255 results in:
S#ErrorFlg 1, S#ErrorNr 239, S#ErrorTyp -149

12-54 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

FIND
The character string function FIND determines the position where the
lower character string first begins in the upper one (Standard Functions).

find.bmp

Fig. 12-168: Standard function FIND

string_1 string_2 int_1

’’ ’’ 1

’bcd’ ’’ 0

’’ ’xy’ 0

’bcdbcde’ ’cd’ 2

Fig. 12-169: Value assignment:

Errors cannot occur: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

12.3 Firmware Functions

Firmware functions are intended to support the user. He can use them,
but not alter them, as they are stored in the library of the programming
system.

• Analog Module RMC12.2.-2E-1A, Functions

• PROFIBUS DP, Functions

• BT-Bus - Functions

• ASI-Bus, Functions, Function blocks and Data types

• INTERBUS, Function.

Analog Module RMC12.2.-2E-1A, Functions
This chapter provides an overview of the applications of the INTERBUS
analog module RMC 12.2-2E-1A and the requisite firmware functions:

• Address assignment of the registers

• Setting the measuring ranges

• Voltage measurement VLT_MEAS up to ±10 V

• Current measurement AMP_MEAS up to ±20 mA

• Resistance measurement RES_MEAS up to 2000 Ω
• Temperature measurement TMP1MEAS from -100 °C up to +850 °C

by means of Pt100 element

• Voltage and current output AN_OUT from ±10 V and +20 mA
respectively

• Program example of analog module RMC12.2-E-1A

WinPCL 06VRS Functions in WinPCL 12-55

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Address Assignment of the Registers - Analog Module
The analog values of the two channels, digitized by the Analog Module
RMC12.2.-2E-1A, Functions are each provided as 16-bit input word. The
assignment of the channels to the absolute addresses can be seen from
the following figure.

The variables of the two input words and the variable of the output word
OUT 0 are to be declared as INTEGER type in the declaration editor.

Word M Word M+1 ISB Word

Analog value of channel 1 (%IW*.4) Analog value of channel 2 (%IW*.4) IN register

Output word OUT 0 (QW*.0) Parameter word OUT 1 (%QW*.2) OUT register

Fig. 12-170: Address assignment of the registers

Setting the Measuring Ranges - Analog Module
The measuring range of each of the two analog input channels of the
Analog Module RMC12.2.-2E-1A, Functions is set by means of two bits,
called RANGE_0 and RANGE_1. The assignment to the absolute
addresses of the output word can be seen from the figure below.

Einstellung_MessBereiche.bmp

Fig. 12-171: Setting the measuring ranges

The following measuring ranges can be set with the bits RANGE_0 and
RANGE_1.

Measuring
range

Channel 1
RANGE_1
%Q*.2.7

Channel 1
RANGE_0
%Q*.2.6

Channel 2
RANGE_1
%Q*.2.5

Channel 2
RANGE_0
%Q*.2.4 Voltage Current Resistance

Tempe-
rature

I 0 0 0 0 ±0.5 V --- 200 Ω -100 °C to
+266 °C

II 0 1 0 1 ±1.0 V --- 400 Ω -100 °C to
+850 °C

III. 1 0 1 0 ±5.0 V ±20 mA 2000 Ω ---

IV 1 1 1 1 ±10.0 V --- --- ---

Fig. 12-172: Overview of the settable measuring ranges

12-56 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

VLT_MEAS
In connection with the Analog Module RMC12.2.-2E-1A, Functions, this
function can be used to measure voltages of up to ±10 V. The resolution
is indicated in the table below. The measuring range is selected by way of
the two Boolean inputs RANGE_0 and RANGE_1. The analog value of
the type INT is applied to the input IN. The output variable of the function
contains the measured voltage value of the type DINT, whose unit is
dependent on the set measuring range.

Error variables

If an inadmissible value is applied to the input IN, then the error variables
are set as follows:

S#ErrorFlg: TRUE, S#ErrorNr: 1, S#ErrorTyp: -240

The measured value is in this case set to 0.

vlt_meas.bmp

IN: (INT): Analog value channel 1 or 2
RANGE_0: (BOOL) Lower-value bit of the measuring range
RANGE_1: (BOOL) Higher-value bit of the measuring range

Fig. 12-173: Firmware function voltage measurement VLT_MEAS

Measuring
range

Voltage range Resolution Measured value
 unit

I ±0.5 V 250 µV [10 µV]

II ±1.0 V 500 µV [100 µV]

III. ±5.0 V 2.5 mV [100 µV]

IV ±10.0 V 5 mV [1 mV]

Fig. 12-174: Resolution and measured value unit in the measuring ranges

AMP_MEAS
In connection with the Analog Module RMC12.2.-2E-1A, Functions, this
function can be used to measure currents of up to ±20 mA. The resolution
is 10 µA. The type INT analog value is applied to the input IN. The output
variable of the function contains the measured type INT current value.
The measured-value unit is 1 µA, with the measuring range of the
channel having to be set to ±20 mA (measuring range III).

WinPCL 06VRS Functions in WinPCL 12-57

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Error variables

If an inadmissible value is applied to the input IN, then the error variables
are set as follows:

S#ErrorFlg: TRUE, S#ErrorNr: 1, S#ErrorTyp: -246

The measured value is in this case set to 0.

amp_meas.bmp

IN: (INT): Analog value channel 1 or 2
Fig. 12-175: Firmware function current measurement AMP_MEAS

Measuring range Current range Resolution Measured value
unit

III. ±20 mA 10 µA 1 µA

Fig. 12-176: Resolution and measured value unit

RES_MEAS
In connection with the Analog Module RMC12.2.-2E-1A, Functions, this
function can be used to measure resistances of up to 2000 Ω. The
resolution is indicated in the table below. The measuring range is selected
by way of the two Boolean inputs RANGE_0 and RANGE_1. The analog
value of the type INT is applied to the input IN. The output variable of the
function includes the measured resistance value of the type INT, whose
unit is dependent on the set measuring range.

Error variables

If an inadmissible value is applied to the input IN, then the error variables
are set as follows:

S#ErrorFlg: TRUE, S#ErrorNr: 1, S#ErrorTyp: -247

The resistance value is in this case set to -1.

If the measuring range IV (RANGE_0 and RANGE_1 are TRUE) is set,
the resistance value is set to -2; the error variables are set as indicated
above.

res_meas.bmp

IN: (INT): Analog value channel 1 or 2
RANGE_0: (BOOL) Lower-value bit of the measuring range
RANGE_1: (BOOL) Higher-value bit of the measuring range

Fig. 12-177: Firmware function resistance measurement RES_MEAS

Measuring range Resistance Resolution Measured value
unit

I 200 Ω 100 mΩ 100 mΩ

II 400 Ω 200 mΩ 100 mΩ

III. 2000 Ω 1 Ω 1 Ω

Fig. 12-178: Resolution and measured value unit in the measuring ranges

12-58 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

TMP1MEAS
In connection with a PT100 element at the Analog Module RMC12.2.-2E-
1A, Functions, this function can be used to measure temperatures
ranging from -100 °C to +850 °C.

The implemented characteristic line describes that of an industrial
platinum resistance thermometer which according to EN 60751 describes
the interrelationship between temperature T and electrical resistance RT

as follows:

for the range -100 °C to 0 °C:

• RT =100Ω [1+AT+BT 2+C(T-100°C)T 3]

for the range 0°C to 850°C:

• RT =100Ω (1+AT+BT 2)

The applicable constants are:

• A = 3.9083E-3 °C-1, B = -5.775E-7 °C-2, C = -4.183E-12 °C-4

In the table below the resolution is indicated as a function of the set
measuring range.

The measuring range is selected by way of the two Boolean inputs
RANGE_0 and RANGE_1. The analog value of the type INT is applied to
the input IN.

The output variable of the function includes the measured temperature
value of the type INT, whose unit is dependent on the set measuring
range.

Error variables

If an inadmissible (negative) value is applied to the input IN, then the error
variables are set as follows:

S#ErrorFlg: TRUE, S#ErrorNr: 1, S#ErrorTyp: -248.

In this case the temperature value adopts the value -10000.

If an invalid measuring range (III or IV) is set, the temperature value is set
to -20000; the error variables adopt the above-indicated values.

tmp1meas.bmp

IN: (INT): Analog value channel 1 or 2
RANGE_0: (BOOL) Lower-value bit of the measuring range
RANGE_1: (BOOL) Higher-value bit of the measuring range

Fig. 12-179: Firmware function temperature measurement TMP1MEAS

Measuring range Temperature Resolution Measured value
 unit

I -100 ... +266 °C 0.5 °C 0.1 °C

II -100 ... +850 °C 1 °C 1 °C

Fig. 12-180: Resolution and measured value unit in the measuring ranges

WinPCL 06VRS Functions in WinPCL 12-59

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

AN_OUT
This function can be used to provide voltages of up to ±10 V and currents
of up to +20 mA at the analog output of the Analog Module RMC12.2.-2E-
1A, Functions, with the minimum incremental width being 4.88 mV and
9.77 µA respectively.

The variable value of this function must be copied to the output word
OUT 0. The input SCALE is used as scaling factor. It is advisable to set
this factor to a value of 10, 100, 1000, or 10.000 for voltage output and to
a value of 20, 200, 2000, or 20.000 for current output, so that the value
applied to the input OUT represents the analog output value. The analog
output value is calculated as follows:

an_out_form.bmp

Fig. 12-181: Output voltage and output current - rule for calculation

Example:

For an output voltage of 1.6 V, the input variables can be assigned as
follows:

• OUT: 160

• SCALE: 1000

A current of 0 ... +20 mA is provided at the current output proportional to
the output voltage of 0 …+10 V. For this example a current of 3.2 mA
results.

Error variables

If ‘0’ is assigned to the SCALE input or the OUT value is greater in terms
of amount than the SCALE value, then the error variables are set as
follows:

S#ErrorFlg: TRUE, S#ErrorNr: 1, S#ErrorTyp: -249

In this case the output variable of the function adopts the value 0 which
corresponds to an output value of 0 V and 0 mA.

an_out.bmp

OUT: (INT): Output value
SCALE: (INT): Scaling factor, +10 V and +20 mA

Fig. 12-182: Firmware function voltage and current output AN_OUT

12-60 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Program Example of Analog Module RMC12.2-E-1A
In connection with the Analog Module RMC12.2.-2E-1A, Functions, the
following measurement must be taken:

• channel 1: voltage measurement in the range of ±10 V

• channel 2: temperature measurement in the range of +300...+400 °C

In addition a current of 10 mA is output at the analog output.

The logical address 2 for the analog module was assigned by way of the
IO editor.

dekl_analogmod.bmp

Fig. 12-183: Declaration part for the analog module example

WinPCL 06VRS Functions in WinPCL 12-61

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

impl_analogmod.bmp

Fig. 12-184: Ladder diagram for the analog module example

12-62 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

PROFIBUS DP, Functions
The following Firmware Functions are available:

• Starting the bus communication: DPM_START

• Stopping the bus communication: DPM_STOP

• Program Example for Starting and Stopping the PROFIBUS

• Status information on PROFIBUS process data exchange:
DPM_EXCHG

DPM_START
Starting the bus communication, PROFIBUS DP, Functions

Using this function, the PROFIBUS is switched to the OPERATE mode
and communication between master and slaves is started.

Note: Using the Fieldbus IO Configurator FIOCon, it is possible to
set the starting behavior of the PROFIBUS after system
initialization. If ”Automatic enabling of communication by the
system” is set, then the bus communication is automatically
started after every PLC program download (CTRL-F9) and
after every download of the configuration by the FIOCon. If
the ”Controlled enabling of communication by the application
program” setting is selected, the bus communication must be
started explicitly with the block DP_START.

The bus communication is started if the input becomes START TRUE. If
start is successful, the function result becomes TRUE.

Error variables

If a PROFIBUS interface is not provided, the error variables must be set
as follows:

S#ErrorFlg: TRUE

S#ErrorNr: 235

S#ErrorTyp: -244

DPM_START.bmp

START: Activating the OPERATE mode
Fig. 12-185: PROFIBUS DP, function DPM_START

WinPCL 06VRS Functions in WinPCL 12-63

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

DPM_STOP
Stopping the bus communication, PROFIBUS DP, Functions

Using this function, the PROFIBUS is switched to the STOP mode and
communication between master and slaves is stopped.

The bus communication is stopped if the input becomes STOP TRUE. If
the function is executed successfully, the function result becomes TRUE.

Error variables

If a PROFIBUS interface is not provided, the error variables must be set
as follows:

S#ErrorFlg: TRUE

S#ErrorNr: 235

S#ErrorTyp: -243

DPM_STOP.bmp

START: Activating the STOP mode
Fig. 12-186: PROFIBUS DP, function DPM_STOP

Program Example for Starting and Stopping the
PROFIBUS
The PC104-PROFIBUS interface is fitted to slot 2. The bus can be started
using the variable dp_start and can be stopped using the variable
dp_stop.

Dekl_FN_DP.bmp

Fig. 12-187: Declaration part for the program example

12-64 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Impl_FN_DPM.bmp

Fig. 12-188: Implementation part for the program example

DPM_EXCHG
Status information on process data exchange, PROFIBUS DP, Functions

This function supplies the status information on the PROFIBUS process
data exchange. If the data exchange is active, the function result is
TRUE.

Error variables

If a PROFIBUS interface is not provided, the error variables must be set
as follows:

S#ErrorFlg: TRUE

S#ErrorNr: 235

S#ErrorTyp: -245

DPM_EXCHG.bmp

READ: Read status
Fig. 12-189: PROFIBUS DP, function DP_EXCHG

WinPCL 06VRS Functions in WinPCL 12-65

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

BT-Bus, Functions
Analogous to the other fieldbuses the following new system functions are
provided for the BT bus:

• BT_STATE: BT bus diagnostic function

• BT_STOP: Stop I/O data exchange

• BT_START: Start I/O data exchange

BT_STATE
As diagnostic function system function BT_STATE shows the current
operating state of the BT bus. (BT-Bus, Functions)

BT_STATE.bmp

READ: 0 - Function not active
1 - Read operating state

RUN: 0 - I/O data exchange not active
1 - I/O data exchange active

ERROR: 1 - Error on BT bus
STOP: 1 - BT bus switched to STOP
INIT: 1 - BT bus is initialized
BT_STATE: State of the READ input

Fig. 12-190: BT bus: Function BT_STATE

Error variables

If there is no BT bus connection, the error variables are set as follows:

S#ErrorFlg: TRUE

S#ErrorNr: 235

S#ErrorTyp: -219

12-66 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

BT_START
System function BT_START enables the PLC user to switch the BT bus
from state ’STOP’ to state ’Run’. This function is required to restart the
communication after the detected bus error is eliminated (BT-Bus,
Functions).

BT_START.bmp

START: 0 - Function not active
1 - Switch BT bus in state ’RUN’

BT_START: 0 - ’STOP’ (I/O data exchange not active)
1- ’RUN’ (I/O data exchange active)

Fig. 12-191:BT bus: Function START

Error variables

If there is no BT bus connection, the error variables are set as follows:

S#ErrorFlg: TRUE

S#ErrorNr: 235

S#ErrorTyp: -217

BT_STOP
System function BT_STOP enables the PLC user to switch the BT bus in
state ’STOP’. In this state no data exchange with the operator terminals
occurs (BT-Bus, Functions).

BT_STOP.bmp

STOP: 0 - Function not active
1 - Switch BT bus in state ’STOP’

BT_STOP: 1 - ’STOP’ (I/O data exchange not active)
Fig. 12-192:BT bus: Function STOP

Error variables

If there is no BT bus connection, the error variables are set as follows:

S#ErrorFlg: TRUE

S#ErrorNr: 235

S#ErrorTyp: -218

WinPCL 06VRS Functions in WinPCL 12-67

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ASI Bus, Functions
Analogous to the other fieldbusses the following system functions for the
ASI bus are provided:

• ASIM_STATE_CH*: Diagnostic function for the channels 1 and 2, ASI
bus

• ASIM_STOP: Stop I/O data exchange

• ASIM_START: Start I/O data exchange

• ASIM_RESET: Reset ASI bus

• ASIM_SLDIAG Diagnosis of single slaves

ASIM_START
System function ASIM_START enables the PLC user to switch the data
exchange with the slaves on channel 1 and channel 2 of the ASI bus from
state ’STOP’ to state ’RUN’.

Note: If the process data exchange with system configurator SyCon
(menu Online / Stop communication) was stopped, the
process data exchange can only be restarted via the SyCon.

ASIM_START.bmp

START: 0 - Function not active
1 – Switch BT bus to state 'RUN'

ASIM_START: 0 – 'STOP' (I/O data exchange not active)
1 – 'RUN' (I/O data exchange active)

Fig. 12-193: ASI bus: Function START

Error variables

If there’s no ASIM bus connection, the error variables are set as follows:

S#ErrorFlg: TRUE

S#ErrorNr: 235

S#ErrorTyp: -331

The error occurs also, if

• there’s no ASI master connection programmed in the I/O editor or

• the address setting of the PC104 ASI master connection is incorrect.

12-68 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ASIM_STOP
System function ASIM_STOP enables the PLC user to switch the data
exchange with the slaves to channel 1 and channel 2 of the ASI bus to
state ’STOP’. In this state no I/O data exchange occurs.

ASIM_STOP.bmp

STOP: 0 - Function not active
1 – Switch BT bus to state 'STOP'

ASIM_STOP: 1 – 'STOP' (I/O data exchange not active)
Fig. 12-194: ASIM bus: Function STOP

Error variables

If there’s no ASIM bus connection, the error variables are set as follows:

S#ErrorFlg: TRUE

S#ErrorNr: 235

S#ErrorTyp: -332

The error occurs also, if

• there’s no ASI master connection programmed in the I/O editor or

• the address setting of the PC104 ASI master connection is incorrect.

ASIM_RESET
System function ASIM_RESET enables the PLC user to switch the data
exchange with the slave on channel 1 and channel 2 of the ASI bus on
and off.

If input RESET is set to TRUE, the master connection is reset, until this
input is set to FALSE again. The input is only mapped to the output and
provides therefore no further information.

During resetting the master connection, the outputs of the slave are
switched to a safe state. If the RESET input is set to FALSE again, the
initialization of the master occurs, whereby the process data exchange is
started by means of SyCon depending on the settings. The initialization
can last several seconds.

Note: If in the system configurator SyCon was set, that the process
data exchange is stopped as soon as the communication with
the slave is interrupted, the ASI master has to be reset by
means of this function.

ASIM_RESET.bmp

RESET: Executes a warm start of the ASI master connection
ASIM_RESET: Follows the input

Fig. 12-195: ASIM bus: Function RESET

WinPCL 06VRS Functions in WinPCL 12-69

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Error variables

If there’s no ASIM bus connection, the error variables are set as follows:

S#ErrorFlg: TRUE

S#ErrorNr: 235

S#ErrorTyp: -334

The error occurs also, if

• there’s no ASI master connection programmed in the I/O editor or

• the address setting of the PC104 ASI master connection is incorrect.

ASIM_SLDIAG
System function block ASIM_SLDIAG serves to transmit the diagnostic
information to the slave, that is addressed via the inputs SLV_ADR and
CHANNEL. If the information is valid, output READY becomes active.

The diagnostic information is listed in structure ASISLDIAG.

asim_sldiag.bmp

READ: Request of the diagnostic information
SLV_ADR: Address of the slaves. Valid values: 1...62
CHANNEL: Channel number. Valid values: 1, 2
DIAG: Diagnostic information of the slave; see type description
READY: For TRUE the information of the slave is valid

Fig. 12-196: ASIM-Bus: Function block ASIM_SLDIAG

12-70 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Type description ASISLDIAG

typ_asisldiag.bmp

NO_RESPONSE: Device does not respond or is not available.
BUFFER_OVERFLOW: The number of the entries in the error buffer

exceeds the maximum possible number.
CONFIGURATION_FAULT: The determined IO or ID code differs from the

configured code.
NOT_ACTIVE: The slave is not active in the current

configuration.
CONFIGURATION_DATA: Retrieved IO/OD code
DEV_NOT_INITIALIZED: Slave was not initialized
DEV_NOT_ACTIVE: Slave not active
NO_FAULT: Slave indicates no error
DEV_MISSING: Slave not available
DEV_FOUND: At the moment not supported
DIAG_0/1/2: Slave-specific diagnostic information. See

manual of the manufacturer.
Fig. 12-197: Data type "Diagnostic information of a SLAVE"

Note: These blocks may not be declared in the retain area.

Error variables

For all errors of the block applies:
S#ErrorFlg: TRUE, S#ErrorTyp: -336,

S#ErrorNr: 235 occurs, if

• there’s no ASI master connection programmed in the I/O editor,

• there’s no PC104 ASI master connection plugged in the control,

• the address setting of the PC104 ASI master connection is incorrect.

S#ErrorNr: 1 (invalid input parameter) occurs, if

• the slave address is greater 62 or equal to 0,

• the channel number is unequal to 1 or 2.

S#ErrorNr: 6 (internal transmission error) occurs, if during the diagnostic
request an error, e.g. timeout, occurred.

WinPCL 06VRS Functions in WinPCL 12-71

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ASIM_STATE_CH*
The system functions ASIM_STATE_CH1 or ASIM_STATE_CH2 enable
to read the status information of the ASI master for the respective
channel.

The information is as long valid as the main output is active.

Error variables

S#ErrorFlg: TRUE

S#ErrorNr: 235

S#ErrorTyp: -333 (channel 1) or -335 (channel 2),

The error occurs also, if

• there’s no ASI master connection programmed in the I/O editor,

• there’s no PC104 ASI master connection plugged in the control,

• the address setting of the PC104 ASI master connection is incorrect.

ASIM_STATE_CH1.bmp

ENABLE: Retrieving the status information

CHANNEL_ERROR: If this output is set, an error occurred, that deactivates
the process data exchange with all slaves.

SLAVE_ERROR: The communication with at least one slave can not be
started. See also: ERROR_CODE and
ERROR_DEVICE_ADDRESS.

BUS_RUN: Process data exchange with at least one slave is
active.

ASI_POWER_FAIL: This output is set, if the voltage supply of the ASI bus
is insufficient. Output CHANNEL_ERROR becomes
also TRUE.

ERROR_DEVICE_ADDRESS: Address of the slave, that indicated the last
diagnostic message.

ERROR_CODE: See table below.
LDS: List of slaves with diagnosis. Table of the slaves with

pending diagnosis. Every slave is assigned to a
corresponding ARRAY element.

ASIM_STATE_CH1/2: TRUE, as long as ENABLE is TRUE. All outputs are
only valid, if this output is set.

Fig. 12-198: ASIM_ bus: Functions ASIM_STATE_CH1 / ASIM_STATE_CH2

12-72 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Note: CHANNEL_ERROR: If this output is set, an error occurred,
that deactivates the process data exchange. Error causes can
be:

• Soft/Hardware errors on the PC104 controller board

• Unplugged bus cables

• Insufficient voltage supply of the ASI bus

Additional information about the error cause is indicated in the
outputs ERROR_CODE and ASI_POWER_FAIL.

Note: If the process data exchange via SyCon or ASIM_STOP was
deactivated, output CHANNEL_ERROR is not set.

Value Explanation

0 No Error / Success No error detected.

Initialization error

50 No User Task. The user task could not be found (internal error).

51 No Global Data. The global data area could not be accessed (internal
error).

52 No PLC Task. The PLC task could not be found (internal error).

53 Unknown Mode. The detected data exchange mode is not supported.

54 No Protocol Chip Found. The expected protocol chip could not been
found (System Failure).

55 Channel #1 Not Found. The protocol chip for channel 1 does not
respond.

56 Channel #2 Not Found. The protocol chip for channel 2 does not
respond.

57 Initialization Failure Master. A failure during scanning the master table
has occur.

58 Baudrate Not Supported. The detected baudrate is not supported.

59 Unknown Data Format. The detected data format is none of the defined
(Intel / Motorola).

60 Unknown AutoClear Mode. The detected AutoClear mode is none of
the defined.

61 Start-Option Not Supported. The detected Start-option is none of the
defined.

62 AutoClear Mode - Automatic Address Assignment Conflict. The
AutoClear mode conflicts to the automatic address assignment.

63 Initialization Failure Slave-Device. A failure during scanning the slave
entry table has occurred.

64 Invalid ASi Channel. The detected channel number is invalid.

65 Maximum Slave Entries Reached. The detected count of slave
parameter sets exceed the max. defined count of slaves.

66 Invalid Address Mapping. Address-overlapping was detected by the
ASi Master during screening the input / output offsets.

67 Invalid Slave Address. The detected slave address is invalid.

68 Invalid Device Parameter. At least one of the detected device
parameter is invalid.

WinPCL 06VRS Functions in WinPCL 12-73

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Value Explanation

69 Parameter Value Out Of Range. The detected parameter value is out
of range.

70 IO Code Out Of Range. The detected IO code is not supported.

71 ID Code Out Of Range. The detected ID code is not supported.

72 Device Address Double. The detected slave address already exists.

73 Module Count Failure. The number of input / ouput modules exceeds
the max. defined number.

74 Device Not Activated. The requested slave is not activated.

75 No Configuration Data Found. No configuration data in the data base
found.

76 Version Incompatible. The detected version of the ASi master state
machine does not match the expected one (internal error).

77 Unknown Initialization Error. Unknown initialization error detected.

Fig. 12-199: Error code at output "ERROR_CODE": Initialization error

Runtime error

110 Watchdog Failure A watchdog failure occurred. The ASi Master will set
both channels to OFFLINE state.

111 No Data Acknowledge. The user has failed to acknowledge the data
cycle (in data exchange mode 0) .The ASi Master will set both
channels to OFFLINE state.

112 Application Error. An application (USER) error has been detected by
the task.

113 Unknown Command. The detected command is none of the defined.

114 Unexpected IX State. The fieldbus interface processor (IX1) reports an
state which does not match to the expected one (internal error).

115 IX Not Ready. The fieldbus interface processor (IX1) is not ready.

116 IX Not Active. The fieldbus interface processor (IX1) is not active.

117 Reserved ...

118 Invalid Channel. The detected channel number is invalid or the ASi
Master reports an unrecoverable failure for this channel.

119 Invalid Slave Address. The requested slave address is out of range.

120 Parameter Value Out Of Range. The parameter value handed over by
the application is out of range.

121 Slave Exists. The requested slave exists in the current configuration.

122 Slave Not Exists. The requested slave does not exists in the current
configuration.

123 Slave is Projected. The requested slave is a member of the List of
Projected Slaves.

124 Slave is Not Projected. The requested slave is not a member of the List
of Projected Slaves.

125 Slave is Active. The requested slave is a member of the List of
Activated Slaves.

126 Slave is Not Active. The requested slave is not a member of the List of
Activated Slaves.

127 Slave is Detected. The requested slave is a member of the List of
Detected Slaves.

128 Slave is Not Detected. The requested slave is not a member of the List
of Detected Slaves.

12-74 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Runtime error

129 Invalid Mode. The detected mode is not supported by the requested
function.

130 Invalid Area. The detected area code is not supported by the requested
function.

131 Projected Slave is Missing. A projected slave is missing.

132 None-Projected Slave Found. An none-projected slave was found by
the ASi Master.

133 Slave Configuration Fault. The configured IO-/ID-Code differs from the
detected IO-/ID-Code.

134 Service Not Available. The requested service is not available.

135 AutoConfiguration Failure.An error during performing the function
’AutoConfiguration’ occurred.

136 Multiplexing in Process. The multiplexing sequence for analogue
modules is still in process.

137 APF for Channel. ASi power failure (APF) was detected for the
requested channel.

138 Unexpected Parameter. Slave responded with an unexpected
parameter value.

139 Auto Clear State Reached. The device reached the Auto Clear State.

140 Unexpected Runtime Error

Fig. 12-200: Error codes at output "ERROR_CODE": Runtime error

INTERBUS, Function
The diagnostic functions IB_STATE / IB_STATE2 for the INTERBUS
retrieve the values of the diagnostic bit register and the diagnostic
parameter register of the INTERBUS and provide them in a conditioned
manner. The extension by the second INTERBUS master is only available
after releasing version 06V02 / 23V02. Both busses provide the same
functions. The two registers mentioned above map the diagnostic display
to the control system and inform about the current status of the
INTERBUS system.

Diagnostic bit register

The diagnostic bit register consists of 16 bits. Each bit in the diagnostic bit
register is assigned to a state of the INTERBUS controller board. If there’s
no malfunction, only the bits READY, ACTIVE and RUN are set. Then, the
diagnostic parameter register contains value 0x0000.

Diagnostic parameter register

The states in the bits USER, PF, BUS and CTRL of the diagnostic bit
register are specified via the diagnostic parameter register. The value of
this register is always specified again, if one of the above mentioned bits
is set. In case of a bus error (BUS == TRUE) or a peripheral fault (PF ==
TRUE) the diagnostic parameter register contains the specification of the
error location (segment and position). In case of an user (USER ==
TRUE) or hardware error (CTRL == TRUE) an error code is indicated.

WinPCL 06VRS Functions in WinPCL 12-75

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

IB_State.bmp

ENABLE TRUE: Request of the diagnostic bit and diagnostic parameter
register
FALSE: Outputs are deleted

FAULT Disjunction of the bits USER, PF, BUS and CTRL: If at least
one of this signals is TRUE, the bit FAULT is set.

USER User error / parameterization
PF Peripheral fault
BUS Bus error
CTRL Error on the INTERBUS controller board / hardware
DETECT Diagnostic routine is active
RUN Data transmission is active, data cycles are executed
ACTIVE Only ID cycles are executed
READY Controller board is ready
BSA One or more bus segments are switched off
STOP Outputs are reset
RESULT Standard function was negatively executed
SY_RESULT Synchronization error occurred (only in operating mode

"synchronous")
DC_RESULT Incorrect data cycles (only in operating mode "synchronous")
WARNING Bus warning time has expired (can be parameterized)
QUALITY Specified error density exceeded (because of transmission

fault)
SDSI There’s a message in the standard signal interface
SEG Segment of the error location during bus error or peripheral

fault (corresponds to the diagnostic parameter register)
POS Position of the error location during bus error or peripheral fault

(corresponds to the diagnostic parameter register)
IB_STATE Contents of the diagnostic parameter register

Fig. 12-201: INTERBUS – status display, equal for IB_STATE2

12-76 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Error variables

For all errors of the function applies:
S#ErrorFlg: TRUE, S#ErrorTyp: -330/-337, S#ErrorNr: 235 occurs, if

• there’s no INTERBUS connection programmed in the I/O editor,

• there’s no PC104 INTERBUS connection plugged in the control,

• the address setting of the PC104 INTERBUS connection is incorrect.

12.4 User Functions

The programming system permits the user to write functions himself,
which can be used as re-usable units in the form of a supplement to the
standard and firmware functions. The user functions can import other
user functions and use them in the same way as the standard and
firmware functions. Structuring with sequential function chart elements
and the use of external variables is not possible.

Import Rules for Functions
Standard, firmware and user functions can be used by means of a
function .

The required function is a
standard or firmware function

The required function is a
user function

It is included in the library of the programming system and
is, thus, known.

It does not require any memory that has to be kept
permanently available.

As a result, it can be simply used.

It is not included in the library and is, thus, not known to
the programming system.

It is made known by an automatic import of the function in
the program, function block or function by which it is to be
used.

The declaration part of the function to be imported must at
least be present.

It does not require any memory that has to be kept
permanently available.

As a result, it can be simply used.

The nesting can be continued to any depth desired.

It is forbidden that function ‘A’ uses itself again (recursion) or that
function ‘A’ uses function ‘B’ and the latter uses function ‘A’ again etc.

WinPCL 06VRS Functions in WinPCL 12-77

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Program Example for User Function SELECT_INT
In addition to the main output, the function SELECT_INT is provided with
two further outputs. It imports, i.e. uses, several other functions.

select_int_dekl.bmp

Fig. 12-202: Declaration part of the function SELECT_INT

The implementation is depicted below in IL and LD.

select_int_awl.bmp

Fig. 12-203: Instruction list of the function SELECT_INT

12-78 Functions in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

select_int_kop.bmp

Fig. 12-204: Ladder diagram of the function SELECT_INT

WinPCL 06VRS Function Blocks in WinPCL 13-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

13 Function Blocks in WinPCL

13.1 Function Blocks, General Information

A function block (FUNCTION BLOCK, FB) is a program organization unit,
which can have:

• 1...k inputs,

• 1...m outputs and

• internal variables

and can use external variables.

fb_allgemein.bmp

xxx - Instance name (name of the function block assignment)
yyy - Type name of the function block
ei - Inputs of the function block 1...k
aj - Outputs of the function block 1...m

Fig. 13-1: Function blocks, general interface

The IEC concept provides for a basic separation between the program
code of the function block and the data storage necessary for storing the
values of the variable.

The inputs and outputs of a function block are visible for the user. The
internal variables remain secret to the user.
A distinction is made between standard and firmware function blocks as
well as user-defined function blocks.

Standard Function Blocks

in accordance with EN 61131-3 (+ supplements)

Firmware Function Blocks

• Control of an INTERBUS

• PCP function blocks for the parameter channel of the INTERBUS

• Communication of the PLC with the CNC, via serial interfaces etc.

• Connection of miniature control panels and HMI

• Extension of the functional range of the ISP for Motion Control

User Function Blocks

written by the user himself.
Standard and firmware function blocks can be used, but not modified.
Their interface is constant, even for further developed standard libraries
and operating systems.

13-2 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

13.2 Standard Function Blocks

The standard function blocks for the Rexroth control system are based on
EN 61131-3.
They are available in all programming languages of the system.
They can be used but not modified.

FlipFlops (bistable elements)

• SRflip-flop

• RSflip-flop

• TOGGLE

Edge evaluation

• R_TRIG, edge evaluation for rising edges

• F_TRIG, edge evaluation for falling edges

Collecting / splitting bit strings

• BOOL_BYTE, BOOL_WORD, BOOL_DW

• BYTE_BOOL, WORD_BOOL, DW_BOOL

Up-down counter DOS compatible

• CTUD_USINT_INDR, Counting range 0 ... 255

• CTUD_UINT_INDR, Counting range 0 ... 65535

• CTUD_INT_INDR, Counting range -32768 ...32767

Up-down counter EN 61131 compatible

• CTUD_USINT, Counting range 0 ... 255

• CTUD_UINT, Counting range 0 ... 65535

• CTUD_INT, Counting range -32768 ...32767

Time stages

• TP, - generation of PT-wide single pulses

• TON, - generation of PT-wide on-delay timer function block

• TOFF, - generation of PT-wide off-delay timer function block

• FLASH, - free running clock generator

Date and time

• DATE_RD, read date

• TOD_RD, read time

WinPCL 06VRS Function Blocks in WinPCL 13-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Bistable Elements

SR
The SR flip-flop (also see Standard Function Blocks, Bistable Elements)
realizes a dominating setting of the memory.

SR.bmp

S_1: BOOL Set input, dominating
R_: BOOL Reset input
Q_1: BOOL Output

Fig. 13-2: Standard function block SR

SR_tab.bmp

Fig. 13-3: Circuit diagram and replacement circuit SR

RS
An RS flip-flop (also see Standard Function Blocks, Bistable Elements)
realizes a dominating resetting of the memory.

RS.bmp

S_: BOOL Set input
R_1: BOOL Reset input, dominating
Q_1: BOOL Output

Fig. 13-4: Standard function block RS

RS_tab.bmp

Fig. 13-5: Circuit diagram and replacement circuit RS

13-4 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

TOGGLE
The function block TOGGLE (also see Standard Function Blocks, Bistable
Elements) inverts the previous state of the output Q_ whenever there is a
positive edge at input IN. As long as the input RESET is logic 1, the
output Q_ remains logic 0. The state of the output Q_ can be changed
only if the input ENABLE is logic 1.

toggle.bmp

ENABLE: BOOL Enable input
IN: BOOL Switch over signal
RESET: BOOL Reset input
Q_: BOOL Output

Fig. 13-6: Standard function block TOGGLE

toggle_i.bmp

Fig. 13-7: Pulse diagram TOGGLE

toggle_b.bmp

Fig. 13-8: TOGGLE application

Error handling

Errors cannot occur:

S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

WinPCL 06VRS Function Blocks in WinPCL 13-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Edge Evaluation for Rising and Falling Edges

R_TRIG
The edge evaluation for rising R_TRIG edges (also see Standard Function
Blocks, Edge Evaluation for Rising and Falling Edges) implements a 0-1-
0 transition at the output when the input changes its assignment from 0 to 1.

The pulse duration results from the duration of the PLC cycle.

Note: Reprocessing of the function block in the PLC sequential cycle
must be ensured after a 0-1 transition at the output!

r_trig.bmp

CLK: BOOL Input signal for 0-1 edge evaluation
Q_: BOOL Output

Fig. 13-9: Standard function block R_TRIG

r_trig_i.bmp

Fig. 13-10: Internal realization and pulse diagram

F_TRIG
The edge evaluation for falling F_TRIG edges (also see Standard Function
Blocks, Edge Evaluation for Rising and Falling Edges) implements a 0-1-
0 transition at the output when the input changes its value from 1 to 0.

The pulse duration results from the duration of the PLC cycle.

Note: Reprocessing of the function block in the PLC sequential cycle
must be ensured after a 0-1 transition at the output!

f_trig.bmp

CLK: BOOL Input signal for 10 edge evaluation
Q_: BOOL Output

Fig. 13-11: Standard function block F_TRIG

13-6 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

f_trig_i.bmp

Fig. 13-12: Internal realization and pulse diagram

Collecting / Splitting Bit Strings
A set of function blocks is provided for collecting Boolean variables with
following conversion into BYTE / WORD / DWORD.

Furthermore there is also a set of blocks for splitting BYTE / WORD /
DWORD into Boolean variables.

BOOL_BYTE
The function block BOOL_BYTE (also see Standard Function Blocks,
Collecting / Splitting Bit Strings) converts eight Boolean variables into a
BYTE (and, analogously, BOOL_WORD 16 Boolean variables and
BOOL_DW 32 Boolean variables). Unassigned inputs are interpreted as 0
(FALSE).

Errors cannot occur: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0.

boolbyte.bmp

BIT_0: BOOL Input 2^0
BIT_1: BOOL Input 2^1
to
BIT_7: BOOL Input 2^7
BYTE_: BYTE Output

Fig. 13-13: Standard function block BOOL_BYTE

bool_byte_t.bmp

Fig. 13-14: Value assignment BOOL_BYTE

WinPCL 06VRS Function Blocks in WinPCL 13-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

BOOL_WORD
The function block BOOL_WORD (also see Standard Function Blocks,
Collecting / Splitting Bit Strings) converts 16 Boolean variables into a
WORD (and, analogously, BOOL_BYTE 8 Boolean variables, BOOL_DW
32 Boolean variables). Unassigned inputs are interpreted as 0 (FALSE).

Errors cannot occur: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0.

boolword.bmp

BIT_0: BOOL Input 2^0
BIT_1: BOOL Input 2^1
to
BIT_15: BOOL Input 2^15
WORD_: WORD Output

Fig. 13-15: Standard function block BOOL:_WORD

For further information see BOOL_BYTE.

13-8 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

BOOL_DW
The function block BOOL_DW (also see Standard Function Blocks,
Collecting / Splitting Bit Strings) converts 32 Boolean variables into a
DWORD (and, analogously BOOL_BYTE 8 Boolean variables and
BOOL_WORD 16 Boolean variables). Unassigned inputs are interpreted as
0 (FALSE).

Errors cannot occur: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0.

booldword.bmp

BIT_0: BOOL Input 2^0
BIT_1: BOOL Input 2^1
to
BIT_31: BOOL Input 2^31
DWORD_: DWORD Output

Fig. 13-16: Standard function block BOOL_DWORD

For further information see BOOL_BYTE.

WinPCL 06VRS Function Blocks in WinPCL 13-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

BYTE_BOOL
The function block BYTE_BOOL (also see Standard Function Blocks,
Collecting / Splitting Bit Strings) converts a byte into 8 Boolean variables
(and, analogously, WORD_BOOL 16 Boolean variables, DWORD_BOOL
32 Boolean variables).

Errors cannot occur: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0.

byte_bool.bmp

BYTE_: BYTE Input
BIT_0: BOOL Output 2^0
BIT_1: BOOL Output 2^1
to
BIT_7: BOOL Output 2^7

Fig. 13-17: Value assignment BYTE_BOOL

byte_bool_T.bmp

Fig. 13-18: Value assignment BYTE_BOOL

13-10 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WORD_BOOL
The function block WORD_BOOL (also see Standard Function Blocks,
Collecting / Splitting Bit Strings) converts a word into 16 Boolean variables
(and, analogously, BYTE_BOOL 8 Boolean variables and DWORD_BOOL
32 Boolean variables).

Errors cannot occur: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0.

word_bool.bmp

WORD_: WORD Input
BIT_0: BOOL Output 2^0
BIT_1: BOOL Output 2^1
to
BIT_15: BOOL Output 2^15

Fig. 13-19: Standard function block WORD_BOOL

For further information see BYTE_BOOL.

WinPCL 06VRS Function Blocks in WinPCL 13-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

DW_BOOL
The function block DW_BOOL (also see Standard Function Blocks,
Collecting / Splitting Bit Strings) converts a doubleword into 32 Boolean
variables (and, analogously, WORD_BOOL 16 Boolean variables and
BYTE_BOOL 8 Boolean variables).
Errors cannot occur: S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0.

dw_bool.bmp

DWORD_: DWORD Input
BIT_0: BOOL Output 2^0
BIT_1: BOOL Output 2^1 to
BIT_31: BOOL Output 2^31

Fig. 13-20: Standard function block DW_BOOL

For further information see BYTE_BOOL.

Up-Down Counter
Counters are available according to the standard defaults and as
DOSPCL-compatible function blocks for the following three data types:

DOSPCL-compatible counters

New name DOS name Counter for from to

CTUD_USINT_INDR CTUD_USI USINT numbers 0 255

CTUD_UINT_INDR CTUD_UIN UINT numbers 0 65535

CTUD_INT_INDR CTUD_INT INT numbers -32768 32767

EN-61131-3-compatible counters

Name Counter for from to

CTUD_USINT USINT numbers 0 255

CTUD_UINT UINT numbers 0 65535

CTUD_INT INT numbers -32768 32767

The counters of a table merely differ in their counting ranges but not in
their operating mode.

13-12 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CTUD_USINT_INDR
CTUD_USINT_INDR (also see Standard Function Blocks, Up-Down
Counter) is provided with a dominating reset input R_.

If TRUE is applied to it, this input is reset to CV_=0.

Provided the marginal condition R_=0 is fulfilled, the preset value present
at PV_ is applied as long as LD_ is 1. The usage of the inputs CU_ and
CD_ is of no importance in this case.

Counting is possible under the marginal condition R_=0 and LD_=0.
• CV_ is incremented by 1 in every PLC cycle (contrary to EN 61131-3!)

while CU_ is applied to 1 and CV_ < 255 .

Note: CV_ is decremented by 1 in every PLC cycle (contrary to EN
61131-3!) if CU_ is also applied to 0, while CD_ is 1 and
CV_>0.

• Output QU_ triggers a 1 signal if CV_ >= PV_.

• Output QD_ triggers a 1 signal if CV_ = 0.

ctud_USINT_INDR.bmp

CU_: BOOL Up counter input (status-controlled)
CD_: BOOL Down counter input (status-controlled)
R_: BOOL Reset input (dominant)
LD_: BOOL Load input (for value at PV_)
PV_: USINT Preset value
QU_: BOOL TRUE if CV_ >= PV_
QD_: BOOL TRUE if CV_=0
CV_: USINT Counter value

Fig. 13-21: Counter CTUD_USINT_INDR (DOS-PCL-compatible)

WinPCL 06VRS Function Blocks in WinPCL 13-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CTUD_UINT_INDR
CTUD_UINT_INDR (also see Standard Function Blocks, Up-Down
Counter) is provided with a dominating reset input R_.

If TRUE is applied to it, this input is reset to CV_=0.

Provided the marginal condition R_=0 is fulfilled, the preset value present at
PV_ is applied as long as LD_ is 1. The usage of the inputs CU_ and CD_
is of no importance in this case.

Counting is possible under the marginal condition R_=0 and LD_=0.

• CV_ is incremented by 1 in every PLC cycle (contrary to EN 61131-3!)
while CU_ is applied to 1 and CV_ < 65535 .

Note: CV_ is decremented by 1 in every PLC cycle (contrary to EN
61131-3!) if CU_ is also applied to 0, while CD_ is 1 and
CV_>0.

• Output QU_ triggers a 1 signal if CV_ >= PV_.

• Output QD_ triggers a 1 signal if CV_ = 0.

ctud_UINT_INDR.bmp

CU_: BOOL Up counter input (status-controlled)
CD_: BOOL Down counter input (status-controlled)
R_: BOOL Reset input (dominant)
LD_: BOOL Load input (for value on PV_)
PV_: UINT Preset value
QU_: BOOL TRUE if CV_ >= PV_
QD_: BOOL TRUE if CV_=0
CV_: UINT Counter value

Fig. 13-22: Counter CTUD_UINT_INDR (DOS-PCL-compatible)

13-14 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CTUD_INT_INDR
The counter CTUD_INT_INDR (also see Standard Function Blocks, Up-
Down Counter) is provided with a dominating reset input.

If TRUE is applied to it, this input is reset to CV_=0.

Provided the marginal condition R_=0 is fulfilled, the preset value present
at PV_ is applied as long as LD_ is 1.

The usage of the inputs CU_ and CD_ is of no importance in this case.

Counting is possible under the marginal condition R_=0 and LD_=0.

• CV_ is incremented by 1 in every PLC cycle (contrary to EN 61131-3!)
while CU_ is applied to 1 and CV_ < 32767 .

Note: CV_ is decremented by 1 in every PLC cycle (contrary to EN
61131-3!) if CU_ is also applied to 0, while CD_ is 1 and
CV_>0.

• Output QU_ triggers a 1 signal if CV_ >= PV_.

• Output QD_ triggers a 1 signal if CV_ <= 0.

ctud_INT_INDR.bmp

CU_: BOOL Up counter input (status-controlled)
CD_: BOOL Down counter input (status-controlled)
R_: BOOL Reset input (dominant)
LD_: BOOL Load input (for value on PV_)
PV_: INT Preset value
QU_: BOOL TRUE if CV_ >= PV_
QD_: BOOL TRUE if CV_ <= 0
CV_: INT Counter value

Fig. 13-23: Counter CTUD_INT_INDR (DOS-PCL-compatible)

WinPCL 06VRS Function Blocks in WinPCL 13-15

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CTUD_USINT
CTUD_USINT (also see Standard Function Blocks, Up-Down Counter) is
provided with a dominating reset input R_.

If TRUE is applied to it, this input is reset to CV_=0.

Provided the marginal condition R_=0 is fulfilled, the preset value present
at PV_ is applied as long as LD_ is 1. The usage of the inputs CU_ and
CD_ is of no importance in this case.

Counting is possible under the marginal condition R_=0 and LD_=0.

• A 0-1 edge at CU_ increments the output CV_ by 1, as long as CV_ <
255.

Note: As long as CV_ > 0, the output CV_ is decremented by 1 with
every 0-1 edge at CD_, if CU_ is also applied to 0.

• Output QU_ triggers a 1 signal if CV_ >= PV_.

• Output QD_ triggers a 1 signal if CV_ = 0.

ctud_USINT.bmp

CU_: BOOL Up counter input (edge-controlled)
CD_: BOOL Down counter input (edge-controlled)
R_: BOOL Reset input (dominant)
LD_: BOOL Load input (for value on PV_)
PV_: USINT Preset value
QU_: BOOL TRUE if CV_ >= PV
QD_: BOOL TRUE if CV_=0
CV_: USINT Counter value

Fig. 13-24: Counter CTUD_USINT (EN-61131-3-compatible)

13-16 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CTUD_UINT
CTUD_UINT (also see Standard Function Blocks, Up-Down Counter) is
provided with a dominating reset input R_.

If TRUE is applied to it, this input is reset to CV_=0.

Provided the marginal condition R_=0 is fulfilled, the preset value present at
PV_ is applied as long as LD_ is 1. The usage of the inputs CU_ and CD_
is of no importance in this case.

Counting is possible under the marginal condition R_=0 and LD_=0.

• A 0-1 edge at CU_ increments the output CV_ by 1, as long as CV_ <
65535.

Note: As long as CV_ > 0, the output CV_ is decremented by 1 with
every 0-1 edge at CD_, if CU_ is also applied to 0.

 Output QU_ triggers a 1 signal if CV_ >= PV_.

• Output QD_ triggers a 1 signal if CV_ = 0.

ctud_UINT.bmp

CU_: BOOL Up counter input (edge-controlled)
CD_: BOOL Down counter input (edge-controlled)
R_: BOOL Reset input (dominant)
LD_: BOOL Load input (for value on PV_)
PV_: UINT Preset value
QU_: BOOL TRUE if CV_ >= PV_
QD_: BOOL TRUE if CV_=0
CV_: UINT Counter value

Fig. 13-25: Counter CTUD_UINT (EN-61131-3-compatible)

WinPCL 06VRS Function Blocks in WinPCL 13-17

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CTUD_INT
The counter CTUD_INT (also see Standard Function Blocks, Up-Down
Counter) is provided with a dominating reset input.

If TRUE is applied to it, this input is reset to CV_=0.

Provided the marginal condition R_=0 is fulfilled, the preset value present
at PV_ is applied as long as LD_ is 1.

The usage of the inputs CU_ and CD_ is of no importance in this case.

Counting is possible under the marginal condition R_=0 and LD_=0.

• A 0-1 edge at CU_ increments the output CV_ by 1, as long as CV_ <
32767.

Note: As long as CV_ > -32768, the output CV_ is decremented by 1
with every 0-1 edge at CD_, if CU_ is also applied to 0.

• Output QU_ triggers a 1 signal if CV_ >= PV_.

• Output QD_ triggers a 1 signal if CV_ <= 0.

ctud_INT.bmp

CU_: BOOL Up counter input (edge-controlled)
CD_: BOOL Down counter input (edge-controlled)
R_: BOOL Reset input (dominant)
LD_: BOOL Load input (for value on PV_)
PV_: INT Preset value
QU_: BOOL TRUE if CV_ >= PV_
QD_: BOOL TRUE if CV_ <= 0
CV_: INT Counter value

Fig. 13-26: Counter CTUD_INT (EN-61131-3-compatible)

13-18 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Time Stages for Pulses, On-Delay and Off-Delay Timer Function Blocks
The following time stages are provided:

• TP - pulse

• TON - on-delay timer function block

• TOFF - off-delay timer function block

• FLASH - free running clock generator

Note: These blocks may not be declared in the retain area (see
section Limitation of the Declaration of Function Blocks in the
Retain Area).

TP
(Also see Standard Function Blocks, Time Stages for Pulses, On-Delay
and Off-Delay Timer Function Blocks)

A single TP pulse appears a the output Q_, when a 0-1 transition is
implemented at the input IN_.

The length of the input pulse is of no importance.

Retriggering of the time stage is not possible, i.e. pulses at the input are
ignored as long as the pulse is applied to the output .

The current runtime of the pulse is counted at output ET_. The value
remains active until the 1-0 transition takes place at the input.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

tp.bmp

IN_: BOOL Input
PT_: TIME Pulse width
Q_: BOOL Output
ET_: TIME Current time value

Fig. 13-27: Standard function block TP

tp_i.bmp

Fig. 13-28: Diagram of time stage TP (pulse)

WinPCL 06VRS Function Blocks in WinPCL 13-19

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

TON
(Also see Standard Function Blocks, Time Stages for Pulses, On-Delay
and Off-Delay Timer Function Blocks)

A 1-signal delayed by PT is applied to output Q after a 0-1 transition has
been implemented at the input IN_.

Output Q falls back to 0 if the input is applied to 0 again.

If the 1-signal at the input is shorter than PT, a 1-signal cannot be
generated at the output.

The output ET indicates the current delay time.

The end value is preserved until the signal at the input is applied to 0 again.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

ton.bmp

IN_: BOOL Input
PT_: TIME On-delay timer function block
Q_: BOOL Output
ET_: TIME Current time value

Fig. 13-29: Standard function block TON

ton_i.bmp

Fig. 13-30: Diagram of time stage TON (with on-delay)

13-20 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

TOFF
(Also see Standard Function Blocks, Time Stages for Pulses, On-Delay
and Off-Delay Timer Function Blocks)

If a 0-1 transition is implemented at the input IN_, a 1-signal is applied to
output Q.

If the signal at the input drops from 1 to 0, the 1-signal at output Q_ is still
active for the time period PT and then falls back to 0.

The process restarts without any interruption if the input signal becomes 1
again during the delay time PT. Retriggering of the time stage is possible.

The output ET indicates the current delay time. The end value is
preserved until the signal at the input is applied to 1 again.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

toff.bmp

IN_: BOOL Input
PT_: TIME Off-delay timer function block
Q_: BOOL Output
ET_: TIME Current time value

Fig. 13-31: Standard function block TOFF

Diagram of time stage TOFF (with off-delay)

toff_i.bmp

Fig. 13-32: Diagram of time stage TOFF (with off delay)

WinPCL 06VRS Function Blocks in WinPCL 13-21

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

FLASH
The function block FLASH (also see Standard Function Blocks, Time
Stages for Pulses, On-Delay and Off-Delay Timer Function Blocks) is
operated as a free running clock generator. Pulse and pause times can
be set using the input variables.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

flash.bmp

TIME_ON: TIME Switch-on time (PULSE)
TIME_OFF: TIME Switch-off time (PAUSE)
Q_PULSE: BOOL Output

Fig. 13-33: Standard function block FLASH

flash_b.bmp

Fig. 13-34: FLASH application

Flash_i.bmp

Fig. 13-35: Time course relating to the example above

Error handling

Errors cannot occur:

S#ErrorFlg: 0, S#ErrorNr: 0, S#ErrorTyp: 0

13-22 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Function Blocks for Date and Time
The functions blocks

• DATE_RD and

• TOD_RD

serve for reading the current date and the current time. The time is
provided with a resolution of one second.
The function block interfaces are exactly defined. When a function block
is invoked, the programmer merely has to connect the individual signals.
The function blocks are processed by an assembler program. What goes
on inside the function blocks therefore cannot be represented by the
programming languages IL, LD or FB.

Note: These blocks may not be declared in the retain area (see
section Limitation of the Declaration of Function Blocks in the
Retain Area).

DATE_RD
(Also see Standard Function Blocks, Function Blocks for Date and Time)

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

Reading the date

date_rd.bmp

Fig. 13-36: Reading the date DATE_RD

 Name Type Comment

READ: BOOL 0 - FB not active
1 - Activation of reading the date

WEEKDAY: INT Weekday
0 - Sunday
1 - Monday
2 - Tuesday
3 - Wednesday
4 - Thursday
5 - Friday
6 - Saturday

DAY: INT Day (1…31)

MONTH: INT Month (1…12)

YEAR: INT Year (1980…2035)

READY: BOOL 0 - Date invalid
1 - Date valid

WinPCL 06VRS Function Blocks in WinPCL 13-23

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Date operating principle

The date or time is read by setting the READ input. The result is made
available as function block output.

date_rd_i.bmp

Fig. 13-37: Time course when reading the date DATE_RD

1. Reading of date (and time) is initialized by setting the READ input in
the first PLC cycle.

2. The activated READY output indicates that transmission of date and
time is completed.

3. If date and time are to be read only once, the READ input may now
be cleared.

4. Clearing the READ input also clears the READY output of the function
block.

5. If the READ input is still applied statically, date and time will be
updated after one second.

Note: The period between setting of the READ input and setting of
the READY output cannot exceed one second. This applies
also after start of the PLC program.

Error handling for date (and time)

The function block DATE_RD does not generate any errors. S#ErrorFlg = 0,
S#ErrorTyp = 0, S#ErrorNr = 0.

TOD_RD
(also see Standard Function Blocks, Function Blocks for Date and Time)

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

Reading the time

tod_rd.bmp

Fig. 13-38: Reading the time TOD_RD

13-24 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Name Type Comment

READ: BOOL 0 - FB not active
1 - Activation of reading the time

HOUR: INT Hours (0…23)

MIN: INT Minutes (0...59)

SEC: INT Seconds (0...59)

READY: BOOL 0 - Time invalid
1 - Time valid

(Date and) time operating principle

Time is read by setting the READ input. The result is made available as
function block output.

tod_rd_i.bmp

Fig. 13-39: Time course for reading the time TOD_RD

1. Reading of date and time is initialized by setting the READ input in the
first PLC cycle.

2. The activated READY output indicates that transmission of date and
time is completed.

3. If date and time are to be read only once, the READ input may now
be cleared.

4. Clearing the READ input also clears the READY output of the function
block.

5. If the READ input is still applied statically, date and time will be
updated after one second.

Note: The period between setting of the READ input and setting of
the READY output cannot exceed one second. This applies
also after start of the PLC program.

Error handling for (date and) time

The function block TOD_RD does not generate any errors. S#ErrorFlg = 0,
S#ErrorTyp = 0, S#ErrorNr = 0.

WinPCL 06VRS Function Blocks in WinPCL 13-25

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

13.3 Firmware Function Blocks

INTERBUS, Function Blocks

The following user function blocks are available in the PLC programming
interface for the control of the INTERBUS system (IBM2, G4):

• Preparation for Control of an INTERBUS

• CLR_DIAG: Clear diagnosis parameter register

• SEG_OFF: Deactivate segment

• SEG_ON: Activate segment

• Fehler! Verweisquelle konnte nicht gefunden werden.: Stop data
transmission

• START_D: Start data transmission

• Excerpt from the Description of the Standard Registers

• Program Example for Control of an INTERBUS

These blocks permit INTERBUS modules to be exchanged during bus
operation or INTERBUS sections to be put in and out of operation
separately. Moreover, it is possible to clear the diagnosis parameter
register, to allow a reaction to active INTERBUS messages (peripheral
influences etc.).

PCP Function Blocks for the Parameter Channel of the INTERBUS

The PCP function blocks are provided on the basis of the PCP services.

• PCP_INITIATE: Establish the connection to a PCP slave

• PCP_READ: Read out object values

• PCP_WRITE: Change device parameters

• PCP_GET_OD: Read out several object descriptions

• PCP_IDENTIFY: Read out the "name plate"

• PCP_ABORT: Abbort a connection

• Error Messages of the Communication with PCP Function Blocks
(General Information)

PROFIBUS DP, Function Blocks

The following Firmware Function Blocks are available in the PLC
programming interface for controlling a PROFIBUS:

• Status information on the PROFIBUS master: DPM_STATE

• Single diagnosis of a PROFIBUS slave: DPM_SLDIAG

• Program Example for Control of a PROFIBUS

ASI Bus, Function Block with Data Type

The following Firmware Function Blocks are available in the PLC
programming interface for controlling a ASI Bus:

• ASIM_SLDIAG Single diagnosis of an ASI Bus slave

13-26 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Serial Interfaces, Function Blocks (also see firmware data types: COM)

The following firmware function blocks are available for control of serial
interfaces:

• OPEN_COM Open serial interface

• CLOS_COM Close serial interface

• WR_BYTE Write data byte to serial interface

• RD_BYTE Read data byte from serial interface

• CTRL_COM - Determine status of serial interface

• WR_STR Write data string to serial interface

• RD_STR Read data string from serial interface

• CLR_COM Clear receive buffer and transmit buffer of serial interface

• Error Handling of Function Blocks for Serial Interfaces

• Program Example for Control of serial Interfaces

GUI_SK functionality

The GUI_SK functionality describes a mechanism for a screen-oriented
machine operation. Using a list, the BTV20 / 30 machine function keys R1
to R8 and L1 to L8 can be assigned to any Boolean PLC variable upon
each screen change (soft keys).

• Function Blocks for the HMI Interface (GUI_SK16))

Coupling miniature control panels to the PLC

WinPCL provides firmware blocks to couple miniature control panels to
the PLC.

• BTXX, BTXX_2

MotionControl-Extension of the PLC

To extend the functional range of an ISP in relation to a Motion Control
the PLC interface provides the following function blocks:

• CALC_LINEAR_Y - calculates linearized for a default X value of a
predetermined X-Y value table the respective Y value.

• PID_CONTROL - PID-Control (P-, I-, PI-, PD-, PID-Control)

• AVERAGE_REAL - calculates the floating average value form
maximum 64 REAL values.

• AVERAGE_DINT - calculates the floating average value from
maximum 1023 DINT values.

• PT2_FILTER - PT2-Filter (low pass filtering of a signal)

WinPCL 06VRS Function Blocks in WinPCL 13-27

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

INTERBUS, Function Blocks

Note: These blocks may not be declared in the retain area (see
section Limitation of the Declaration of Function Blocks in the
Retain Area).

Preparation for Control of an INTERBUS
The files are residing in the following folders, as archives to support the
firmware functionality for WinHMI and WinPCL:

• ...Mtgui\BasicData\TEMPLEATES\ibs_control.apv

• ...WinPCL\BasicData\TEMPLATES\ibs_control.apv

The application of the function blocks (also see INTERBUS, Function
Blocks) requires the following activities:

• The current bus configuration has to be entered or read back in the
bus configurator IBS CMD G4.

IBS_IOs.bmp

Fig. 13-40: Current bus configuration in IBS CMD G4 (example)

13-28 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• Check of the (automatically) assigned process data

cmd_Prozessdaten.bmp

Fig. 13-41: Process data, addresses assigned automatically in the example

• The necessary addresses have to be defined for the standard
registers of the bus.

Einstellung_CMD.bmp

Fig. 13-42: Addresses of the INTERBUS standard register (example)

Note: Please note, that the addresses of these registers must be
entered with sufficient spacing for possible bus extensions
after the last bus device.

WinPCL 06VRS Function Blocks in WinPCL 13-29

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• The logic numbers of the INTERBUS devices and the INTERBUS
registers must be entered in the I/O editor of the resource:

io_kachel_ibs.bmp

Fig. 13-43: IO editor of the resource with bus devices and registers

• The registers are to be declared as variables in the resource and to be
enabled as global variables (copy from the sample resource!).

Note: The names of the variables (register) must be applied exactly,
because they are accessed in the function blocks by means of
VAR_EXTERNAL!

Dekl_IBS_Reg.bmp

Fig. 13-44: Declaration of the registers at resource level and enable

• The blocks are available as user function blocks. They must be
imported to the programming interface using the menu File / Archive /
Load archive.

• ...Mtgui\BasicData\TEMPLEATES\ibs_control.apv or

• ...WinPCL\BasicData\TEMPLATES\ibs_control.apv

• The function blocks are declared in the declaration editor of the
respective program intended to use them. The registers must be
declared with same names in the VAR EXTERNAL area.

Continued in the section "Program Example for Control of an
INTERBUS".

13-30 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CLR_DIAG
(also see INTERBUS, Function Blocks)

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

Clear diagnosis registers

If a rising edge is applied to the ENABLE input, a function is triggered on
the interface module, which clears the diagnosis status and the diagnosis
parameter register. If no error message or fault of the INTERBUS is
active after clearing, the diagnosis parameter register has the value
16#0000, while the diagnosis status register shows the current status of
the INTERBUS interface module. Otherwise the diagnosis status register
contains the type of the fault and the diagnosis parameter register
provides additional information on this fault.

clr_diag.bmp

ENABLE: (BOOL) Clearing the diagnosis register (edge-controlled)
OK: (BOOL) Function execution positive / negative
ACTIVE: (BOOL) Function execution active

Fig. 13-45: Rexroth function block CLR_DIAG

If a rising edge is applied to the ENABLE input, the function block is
activated and the ACTIVE output becomes TRUE. The ACTIVE output
becomes FALSE after successful execution of the function. With the
falling edge, the result of the executed function is indicated in the OK
signal for the duration of a PLC cycle . If TRUE is applied to OK, the two
registers were successfully cleared; if not, execution of the function failed.
This is indicated in the set bit USER of the diagnosis status register. The
diagnosis parameter register then contains additional information on the
active fault.

Note: The function block must be activated only if no other function
block (SEG_OFF, SEG_ON, START_D, STOP_D) is active.

WinPCL 06VRS Function Blocks in WinPCL 13-31

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

SEG_OFF
(also see INTERBUS, Function Blocks)

Note: This block may not be declared in the retain area (see also
Limitation of the Declaration of Function Blocks in the Retain
Area).

Deactivate segment

If a rising edge is applied to the ENABLE input, a function is triggered on
the interface module, which deactivates the segment defined at
SEG_POS during bus operation. The outputs of the disconnected devices
are reset.

If a bus terminal (e.g. 16#0200) is indicated as parameter at the input
SEG_POS, the local bus interface and the continuing remote bus
interface are deactivated; this results in a deactivation of all physical
devices behind this bus - that means also the devices of the
corresponding local bus segment. The INTERBUS ring can be opened
starting with the defined bus terminal, without generating a bus error.

If a local bus device (e.g. 16#0201) is indicated, only this local bus is
deactivated. The continuing remote bus of this bus terminal remains
active.

The BSA bit in the diagnosis status register is set after successful
deactivation.

Note: A deactivation of individual local bus devices is not possible.
Always all devices of the corresponding local bus are
deactivated.

Devices 0.0 and 1.0 may not be deactivated. Indicating these
devices as parameters results in the USER error 0x0A20. The
USER bit in the diagnosis status register is set.

seg_off.bmp

ENABLE: (BOOL) Deactivating the segment (edge-controlled)
SEG_POS: (BOOL) Segment SS position PP in format 16#SSPP
OK: (BOOL) Function execution positive / negative
ACTIVE: (BOOL) Function execution active

Fig. 13-46: Rexroth function block SEG_OFF

If a rising edge is applied to the ENABLE input, the function block is
activated and the ACTIVE output becomes TRUE. The ACTIVE signal
becomes FALSE after successful execution of the function. The result of
the executed function is indicated in the OK signal for the duration of a
PLC cycle with the falling edge of the ACTIVE signal. If TRUE is applied
to OK, the segment was successfully deactivated; if not, execution of the
function failed. This is indicated in the set USER bit of the diagnosis
status register. The diagnosis parameter register then contains additional
information on the active fault.

Note: The function block must be activated only if no other function
block (CLR_DIAG, SEG_ON, START_D, STOP_D) is active.

13-32 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

SEG_ON
(also see INTERBUS, Function Blocks)

Note: This block may not be declared in the retain area (see also
Limitation of the Declaration of Function Blocks in the Retain
Area).

Switching on segment

A function is released on the interface module with rising edge on the
input ENABLE, which activates the segment defined at SEG_POS during
the bus operation.

If a bus terminal (e.g. 16#0200) is defined as a parameter on input
SEG_POS, the local bus interface and the continuing remote bus
interface are activated. This results in an activation of all physical users
behind the bus - that means the users of the corresponding local bus
segment are activated, too.

Note: Connection of individual local bus devices is not possible.
Always all devices of the corresponding local bus are
connected.

Devices 0.0 and 1.0 may not be connected. Indicating these
devices as parameters results in the USER error 0x0A20. The
USER bit in the diagnosis status register is set.

Before activating a segment it has to be ensured that the bus
structure corresponds to that bus which was available before
the segment was deactivated. Otherwise a bus error is
generated which leads to a deactivation of the bus.

seg_on.bmp

ENABLE: (BOOL) Activating the segment (edge-controlled)
SEG_POS: (BOOL) Segment SS position PP in format 16#SSPP
OK: (BOOL) Function execution positive / negative
ACTIVE: (BOOL) Function execution active

Fig. 13-47: Rexroth function block SEG_ON

If a rising edge is applied to the ENABLE input, the function block is
activated and the ACTIVE output becomes TRUE. The ACTIVE signal
becomes FALSE after successful execution of the function. The result of
the executed function is indicated in the OK signal for the duration of a
PLC cycle with the falling edge. If TRUE is applied to OK, the segment
was successfully activated; if not, execution of the function failed. This is
indicated in the set USER bit of the diagnosis status register. The
diagnosis parameter register then contains additional information on the
active fault.

Note: The function block must be activated only if no other function
block (SEG_OFF, CLR_DIAG, START_D, STOP_D) is active.

WinPCL 06VRS Function Blocks in WinPCL 13-33

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

STOP_D
(also see INTERBUS, Function Blocks)

Note: This block may not be declared in the retain area (see also
Limitation of the Declaration of Function Blocks in the Retain
Area).

Stop data transmission

If a rising edge is applied to the ENABLE input, a function is triggered on
the interface module, which stops the data transmission and resets the
outputs.

stop_d.bmp

ENABLE: (BOOL) Stopping the data transmission (edge controlled)
OK: (BOOL) Function execution positive / negative
ACTIVE: (BOOL) Function execution active

Fig. 13-48: Rexroth function block

If a rising edge is applied to the ENABLE input, the function block is
activated and the ACTIVE output becomes TRUE. The ACTIVE signal is
deleted after successful execution of the function. The result of the
executed function is indicated in the OK signal with this falling edge. If
TRUE is applied to OK, the data transmission was successfully stopped; if
not, execution of the function failed. This is indicated in the set USER bit
of the diagnosis status register. The diagnosis parameter register then
contains additional information on the active fault.

Note: The function block must be activated only if no other function
block (SEG_OFF, SEG_ON, START_D, CLR_DIAG) is active.

13-34 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

START_D
(also see INTERBUS, Function Blocks)

Note: This block may not be declared in the retain area (see also
Limitation of the Declaration of Function Blocks in the Retain
Area).

Start data transmission

If a rising edge is applied to the ENABLE input, a function is triggered on
the interface module, which starts the data transmission.

Note: Activating this function block while data transmission has
already been started (RUN bit is set), results in a USER error
(USER bit set). The diagnosis parameter register then
contains the value 0x0A02.

start_d.bmp

ENABLE: (BOOL) Starting the data transmission (edge controlled)
OK: (BOOL) Function execution positive / negative
ACTIVE: (BOOL) Function execution active

Fig. 13-49: Rexroth function block START_D

If a rising edge is applied to the ENABLE input, the function block is
activated and the ACTIVE output becomes TRUE. The ACTIVE signal is
deleted after successful execution of the function. The result of the
executed function is indicated in the OK signal with this falling edge. If
TRUE is applied to OK, the data transmission was successfully started; if
not, the execution of the function failed. This is indicated in the set USER
bit of the diagnosis status register. The diagnosis parameter register then
contains additional information on the active fault.

Note: The function block must be activated only if no other function
block (SEG_OFF, SEG_ON, CLR_DIAG, STOP_D) is active.

Excerpt from the Description of the Standard Registers
(Also see INTERBUS, Function Blocks)

Note: Read only access is allowed to standard registers only. If the
registers are overwritten, correct execution of the function
blocks cannot be ensured, and the bus system may show an
unpredictable behavior.

General information

The diagnosis status register and the diagnosis parameter register are
available on the PLC programming interface for an INTERBUS diagnosis.
They map the current status of the INTERBUS system in the user
program, so that the status of the bus system, reasons for the error and
further information can be evaluated. Furthermore three standard function
registers are provided to allow the execution of predefined functions on
the interface module.

The following standard registers are made available by the INTERBUS
connection module:

WinPCL 06VRS Function Blocks in WinPCL 13-35

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Diagnosis status register / diagnosis parameter register

A status of the INTERBUS interface module is assigned to each bit in the
diagnosis status register. The statuses in the error bits (USER, PF, BUS,
CTRL) are explained in more detail in the description of the diagnosis
parameter register. This register is always written again if one of the
above mentioned error bits is active. In case of an error the diagnosis
parameter register either contains the error location, segment and
position of the IBS number or the error type. Otherwise the diagnosis
parameter register has the value 0x0000.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit in the diagnostic status register

 ^ USER User error
 ^

 PF Peripheral failure ^

 BUS Bus failure
 ^

 CTRL Error in connection module / hardware

 ^

 DETECT Diagnosis routine is active

 ^

 RUN Data transmission is active

 ^

 ACTIVE Chosen configuration is ready for operation

 ^

 READY Connection module is ready for operation

 ^

 BSA Bus segment deactivated

 ^

 BASP/SYS_FAIL/CLAB/STOP Stop control system, reset outputs

 ^

 RESULT Negative processing of standard functions

 ^

 SY_RESULT Synchronization error occurred

 ^

 DC_RESULT Faulty data cycles

 ^

 WARNING Fixed waiting time exceeded

 ^

 QUALITY Fixed error density exceeded

 SDSI Active messages for control

Fig. 13-50: Structure of the diagnosis status register

Possible use

The bits which are available in the diagnosis status register can be used
for monitoring of the INTERBUS. Bit PF, for example, is set if a module
signals a failure in the peripheral equipment. In addition to other causes,
failures in the peripheral equipment may be triggered, if the external
voltage supply is missing at an output module or if an INTERBUS ring
fails in connection with a gateway. The module which initiated this failure
can be read via the diagnosis parameter register.

Standard function register

By these registers, predefined functions on the INTERBUS interface
module can be executed and monitored by setting of a certain bit. The
required function is selected via the function start register, while the
corresponding parameters have to be transmitted into the function
parameter register in relation to the selected function. The execution of
the function is indicated in a bit of the function status register.

13-36 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Program Example for Control of an INTERBUS
This program example continues the section "Preparation for Control of
an INTERBUS ". It uses the resource programmed there (also see
INTERBUS, Function Blocks).

Dekl_IBS_Reg_01.bmp

Fig. 13-51: Resource complete for INTERBUS example

For the program "interbus: IBS_CMD_PR", the declaration on the
following page is used.

It contains the declaration of the instances of the IBS function blocks and
the variable for their activation.

The INTERBUS registers are not required for the example at program
level.

The INTERBUS registers, however, are evaluated in the following function
blocks:

• clear: CLR_DIAG

• seg_off: SEG_OFF

• seg_on SEG_ON

• stop_d STOP_D

• start_d START_D

For that reason, they are declared there by means of VAR EXTERNAL.

WinPCL 06VRS Function Blocks in WinPCL 13-37

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ibs_cmd_pr_dekl.bmp

Fig. 13-52: Declaration for the program "interbus: IBS_CMD_PR"

The implementation of the program is attached as ladder diagram on the
next page.

The first network serves for deleting the diagnosis register.

The second and third networks are used for activating and deactivating
the INTERBUS device 0101 (I/O editor, logic number 2).

The forth network evaluates the errors.

13-38 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ibs_cmd_pr_impl.bmp

Fig. 13-53: Implementation for the program "interbus: IBS_CMD_PR"

PCP Function Blocks for the Parameter Channel of the INTERBUS

Note: These blocks may not be declared in the retain area (see
section Limitation of the Declaration of Function Blocks in the
Retain Area).

Process data channel and parameter data channel

Process data and parameter data are transmitted in the INTERBUS
system via this two independently transferring data transmission
channels. Depending on its function not every slave has to support both
channels. However, intelligent devices that transmit process and
parameter data, like frequency converters, drives etc., need both
channels. The process data channel allows to access to the cyclic
process data. If required, the parameter data are transmitted acyclically
via the parameter data channel. The parameter data channel is integrated
in the transmission protocol.

WinPCL 06VRS Function Blocks in WinPCL 13-39

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

In the summation frame of the INTERBUS remain gaps at the locations at
which the PCP devices are addressed. If a transmission of parameter
data is necessary, the data block is divided up in individual segments, that
are as large as the gap. Up to now segment sizes of 1, 2 or 4 words are
possible. One of these segments is transmitted in each INTERBUS cycle
until the whole data block has been sent.

Implemented PCP function blocks

The PCP function blocks are provided on the basis of the PCP services.

• PCP_INITIATE: Establish the connection to a PCP slave

• PCP_READ: Read out object values

• PCP_WRITE: Change device parameters

• PCP_GET_OD: Read out several object descriptions

• PCP_IDENTIFY: Read out the "name plate"

• PCP_ABORT: Abort a connection

Note: A second service request must not be send to the same
device, if the acknowledgement of the first service request was
not received yet (parallel services).

However, it is possible to transmit PCP services
simultaneously to different devices, if an own FB instance was
declared for each device.

If several instances of the same PCP block type addressing
the same device (same communication reference CR) are
used, at each case, the input INVOKE_ID is to be wired with
an unambigous number.

It has to be ensured that the execution of the PCP FBs with
PCP FBs that are implemented in other tasks is not
interrupted.

Operating principle

The operating principle is the same for all FBs.

With the rising edge of input EXECUTE the corresponding function block
is activated, the output ACTIVE is set and the service request is sent via
the INTERBUS master to the PCP device specified at input COMM_REF.

The response was received with the rising edge of the READY output.
The output data of the FB are valid. At the same time, ACTIVE changes
to FALSE. As long as ACTIVE is set, the outputs of the FB remain reset.

If input EXECUTE is reset as long as ACTIVE is set, the FB remains
active (output ACTIVE set), until the response has been received.
Therefore, it is recommended to reset the EXECUTE signal only with the
set READY signal. This is necessary as the internal communication to the
master connection must not be interrupted before the response has been
received.

13-40 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

PCP_INITIATE

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

With this service a logic connection between master and slave is
established. It is verified, if the settings for the seizes of transmitter and
receiver buffer are equal to the supporting services.

pcp_initiate.bmp

Fig. 13-54: Function block PCP_INITIATE

EXECUTE

Activation of the service INITIATE

COMM_REF

Communication reference between controller board and slave

PASSWORD

Password, that is defined for access to objects of the device. You can find
it in the device documents. In some profiles no password is provided. In
this case, value 16#00 has to be filled in.

ACCES_GROUPS

Manufacturer-specific assignment of the controller board to an access
group. In some profiles access groups are not provided. In this case value
16#00 has to be filled in.

READY

Response received, service request terminated

ACTIVE

Service request is executed

ERROR

Error in service request

WinPCL 06VRS Function Blocks in WinPCL 13-41

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

COMM_REF_

Communication reference between controller board and slave

VERSION

Version identification of the object directory in 2 bytes. It is device-specific
and is read out of the object directory by the system, e.g. 16#0000.

PROFILE

Identification of the device profile, i.e. the number of the user-specific
definitions is indicated (16#xxxx).

PROTECTION

Contains the attribute "Access_Protection_Supported" from the device
documents. The parameter indicates, if access rights have been verified
during the access to objects:

16#FF Access rigths have been verified (TRUE),

16#00 Access rights have not been verified (FALSE).

PASSWORD_

Manufacturer-specific password. Normally, it is not used. In this case the
parameter "Password" contains value 16#00.

ACCESS_GROUPS_

Manufacturer-specific assignment of the controller board to an access
group. In some profiles access groups are not provided. In this case this
parameter contains value 16#00.

ERROR_CLASS

Identification for an error number of the initiate service

Specifies the error; Error Message, Service-Specific, Referring to PCP
Blocks

ERROR_CODE

Specifies the error:

16#01 The seizes of the transmitter and receiver buffer of the two devices
do not match.

16#02 The supporting services of the two devices do not match.

16#04 Service rejected by the user program; the error cause is
manufacturer-specific.

ADDITIONAL_CODE

Manufacturer-specific information on the error cause:

16#xxxx Please look at your device documents. Maybe the device is not
ready yet.

16#0000, if parameter "ERROR_CODE" contains the error codes 16#01
or 16#02.

SEND_BUFFER_SIZE / RECEIVE_BUFFER_SIZE

Buffer seizes (transmitter / receiver buffer) of the remote device.

13-42 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

SUPPORTED_SERVICES

Coding of the supported services that the remote device can process.
The coding always occurs in 6 bytes:

The supporting user services of a PCP device are represented
hexadecimally in a bit pattern of 48 bits, whereby the bits 0 ... 23 indicate
the supporting services as client and the bits 24 ... 47 the supporting
services as server. Only some of these 48 bits are really used.

The bits 3, 4, 8, 27, 28 and 32 represent each several services.

All unused bits as well as the bits of the not supported services are set on
"0". Then, the used bits are set on "1", if the service is supported.

unterstuetzte Dienste.bmp

Fig. 13-55: Supported services

Function block PCP_INITIATE causes the following error messages:

S#ErrorNr: -324 with

• S#ErrorTyp: 6 if an internal transmission error occurs or

• S#ErrorTyp: 234 if the memory is not available

WinPCL 06VRS Function Blocks in WinPCL 13-43

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

PCP_READ

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

With this service object values can be read out, if the slave is an PPC
slave. As for ARRAYs and records you can specify, if the whole object or
only one element of the object is to be read out.

pcp_read.bmp

Fig. 13-56: Function block PCP_READ

EXECUTE

Activation of service READ

COMM_REF

Communication reference between controller board and slave

INVOKE_ID

Order number for parallel services (default value = 16#00). This parallel
services have to be supported by the corresponding device. Please, look
at the device description.

If several instances of the same PCP block type addressing the same
device (same communication reference CR) are used, at each case, the
input INVOKE_ID is to be wired with an unambigous number.

INDEX

Index that is – in the device documents – assigned to the object to be
read out. The index is the logic address of the object. You will find the
index in the device documents.

SUBINDEX

A subindex – a logic subaddress – is assigned to each element of an
object (ARRAY or record). You will find the subindex in the device
documents. If the whole object is to read out, fill in 16#00.

READY

Response received, service request terminated

ACTIVE

Service request is executed

13-44 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ERROR

Error in service request

COMM_REF_

Copy of COMM_REF

INVOKE_ID_

Copy of INVOKE_ID

LENGTH

Number of the following data bytes (user data). It depends on the read out
object, e.g. if only one element or the whole object has been read.

ERROR_CLASS / ERROR_CODE

Specifies the error; Error Message, Service-Specific, Referring to PCP
Blocks

ADDITIONAL_CODE

Manufacturer-specific information on the error cause:

16#xxxx Please, look at your device documents. Maybe the device is not
ready yet.

16#0000 , if parameter "ERROR_CODE" contains the error codes 16#01
or 16#02.

DATA

User data of the object

Function block PCP_READ causes the following error messages:

S#ErrorNr: -326 with

• S#ErrorTyp: 6 if an internal transmission error occurs or

• S#ErrorTyp: 234 if the memory is not available

PCP_WRITE

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

With this service the set device parameters of an object can be modified.
As for ARRAYs and records you can specify, if the whole object or only
one element of the object is to be modified.

pcp_write.bmp

Fig. 13-57: Function block PCP_WRITE

WinPCL 06VRS Function Blocks in WinPCL 13-45

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

EXECUTE

Activation of service WRITE

COMM_REF

Communication reference between controller board and slave

INVOKE_ID

Order number for parallel services (default value = 16#00). This parallel
services have to be supported by the corresponding device. Please, look
at the device description.

If several instances of the same PCP block type addressing the same
device (same communication reference CR) are used, at each case, the
input INVOKE_ID is to be wired with an unambigous number.

INDEX

Index that is – in the device documents - assigned to the object to be
written. The index is the logic address of the object. You will find the index
in the device documents.

SUBINDEX

A subindex – a logic subaddress – is assigned to each element of an
object (ARRAY or record). You will find the subindex in the device
documents. If the whole object is to be described, fill in 0.

LENGTH

Number of the following data bytes. It depends on the written object, e.g.
if only one element or the whole object has been read.

DATA

At this place the real user data are filled in, i.e. the values that have to be
newly written.

READY

Response received, service request terminated

ACTIVE

Service request is executed

ERROR

Error in service request

COMM_REF_

Copy of COMM_REF

INVOKE_ID_

Copy of INVOKE_ID

ERROR_CLASS / ERROR_CODE

Specifies the error; Error Message, Service-Specific, Referring to PCP
Blocks

13-46 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ADDITIONAL_CODE

Manufacturer-specific information on the error cause:

16#xxxx Please, look at your device documents. Maybe your device is not
ready yet.

16#0000, if parameter "ERROR_CODE" contains the error codes 16#01
or 16#02.

Function block PCP_WRITE causes the following error messages:

S#ErrorNr: -327 with

• S#ErrorTyp: 6 if an internal transmisson error occurs or

• S#ErrorTyp: 234 if the memory is not available

PCP_GET_OD

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

With this service one or several object descriptions of a device can be
read out. If the whole object directory is to be read out, this service has to
be used several times depending on its seize.

pcp_getod.bmp

Fig. 13-58: Function block PCP_GET_OD

EXECUTE

Activation of service GET_OD

SELECT_INDEX

Selection, if the object can be accessed via index addressing (TRUE) or
via the name (FALSE).

COMM_REF

Communication reference between controller board and slave

WinPCL 06VRS Function Blocks in WinPCL 13-47

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

INVOKE_ID

Order number for parallel services (default value = 16#00). This parallel
services have to be supported by the corresponding device. Please, look
at the device description.

If several instances of the same PCP block type addressing the same
device (same communication reference CR) are used, at each case, the
input INVOKE_ID is to be wired with an unambigous number.

ATTRIBUTES

Selection between object description in short form (16#00) or long form
(16#01)

ACCESS_SPEC

Indicates which object is to be accessed.

16#01 Index of an object

16#02 Name of a variable

16#05 Name of a program sequence (PI)

16#07 Objects as from this starting index are read out

INDEX

Specify the index of the object at this place

NAME

Specify the name of the object at this place

READY

Response received, service request terminated

MORE_FOLLOW

If the access is executed via the starting index, MORE_FOLLOW
indicates that the seize of the requested object descriptions is greater
than the transmitter buffer and therefore, not all of the requested data
could be read out.

FALSE:No further data.

TRUE: There are still further values that you can read out with a further
Get_OD.

If the access occurs via index or name, the value is always FALSE.

ACTIVE

Service request is executed

ERROR

Error in service request

COMM_REF_

Copy of COMM_REF

INVOKE_ID_

Copy of INVOKE_ID

LENGTH

Number of the following data bytes. It depends on the read out object, i.e.
if only one element or the whole object has been read out.

13-48 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ERROR_CLASS / ERROR_CODE

Specifies the error; Error Message, Service-Specific, Referring to PCP
Blocks

ADDITIONAL_CODE

Manufacturer-specific information on the error cause:

16#xxxx Please, look at the device documents. Maybe the device is not
ready yet.

16#0000, if parameter "ERROR_CODE" contains the error codes 16#01
or 16#02.

Function block PCP_GET_OD causes the following error messages:

S#ErrorNr: -329 with

• S#ErrorTyp: 6 if an internal transmission error occurs or

• S#ErrorTyp: 234 if the memory is not available

PCP_IDENTIFY

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

With this service the name plate of the device can be read out.

pcp_identify.bmp

Fig. 13-59: Function block PCP_IDENTIFY

EXECUTE

Activation of service IDENTIFY

COMM_REF

Communication reference between controller board and slave

INVOKE_ID

Order number for parallel services (default value = 16#00). This parallel
services have to be supported by the corresponding device. Please, look
at the device description.

If several instances of the same PCP block type addressing the same
device (same communication reference CR) are used, at each case, the
input INVOKE_ID is to be wired with an unambigous number.

WinPCL 06VRS Function Blocks in WinPCL 13-49

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

READY

Response received, service request terminated

ACTIVE

Service request is executed

ERROR

Error in service request

COMM_REF_

Copy of COMM_REF

INVOKE_ID_

Copy of INVOKE_ID

ERROR_CLASS / ERROR_CODE

Specifies the error: Error Message, Service-Specific, Referring to PCP
Blocks

ADDITIONAL_CODE

Manufacturer-specific information on the error cause:

16#xxxx Please, look at the device documents. Maybe the device is not
ready yet.

16#0000, if parameter "ERROR_CODE" contains error code 16#01 or
16#02.

VENDORNAME

Manufacturer name of the device

MODELNAME

Device name

REVISION

Revision number of the device

Function block PCP_IDENTIFY causes the following error messages:

S#ErrorNr: -328 with

• S#ErrorTyp: 6 if an internal transmission error occurs or

• S#ErrorTyp: 234 if the memory is not available

13-50 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

PCP_ABORT

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

pcp_abort.bmp

Fig. 13-60: Function block PCP_ABORT

EXECUTE

Activation of service ABORT

COMM_REF

Communication reference between controller board and slave

REASON_CODE

Cause for abortion of the connection. Default: 16#00

READY

Response received, service request terminated

ACTIVE

Service request is executed

ERROR

Error in service request

ERROR_CLASS / ERROR_CODE

Specifies the error; Error Message, Service-Specific, Referring to PCP
Blocks

ADDITIONAL_CODE

Manufacturer-specific information on error cause:

16#xxxx Please, look at the device documents. Maybe the device is not
ready yet.

16#0000, if parameter "ERROR_CODE" contains the error codes 16#01
or 16#02.

Function block PCP_ABORT causes the following error messages:

S#ErrorNr: -325 with

• S#ErrorTyp: 6 if an internal transmission error occurs or

• S#ErrorTyp: 234 if the memory is not available

WinPCL 06VRS Function Blocks in WinPCL 13-51

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Error Messages of the Communication with PCP
Function Blocks (General Information)
If a service can’t be executed as provided, an internal error message is
generated. There are three groups of error messages:

• Error messages in conjunction with a connection abortion
(Abort_Indication for PCP Blocks). In this case the output
ADDITIONAL_CODE contains value 0x488D.

• Error messages after rejection of the sent service by the reject service
(Reject_Indication for PCP Blocks). In this case output
ADDITIONAL_CODE contains the value 0x488E.

• Error messages after sending the confirmed services, that could not
be executed (Error Message, Service-Specific, Referring to PCP
Blocks).

Abort_Indication for PCP Blocks
Meaning of the parameters ERROR_CLASS/ERROR_CODE in case of a
connection abortion (see also Error Messages of the Communication with
PCP Function Blocks (General Information)):

16#00 | 16#01 (Disconnect)

Meaning: The user program of the PCP device interrupted the connection.

Cause: -

Remedy: Inform the manufacturer of the PCP device.

16#01 | 16#01 (CRL-Error)

Meaning: CRL entry not OK

Cause: The control has sent the service request Initiate_Request", but the
CRL for the device is not available or the CR is not assigned to a device.

Remedy: Verify the CR entries in the CRL.

16#01 | 16#02 (User Error)

Meaning: The PCP device has received an impermissible or faulty
service.

Cause:

Possibility 1: The connection has already been established. You have
tried a second time to establish a connection with the service request
"Initiate_Request" and thus caused the abortion of the connection.

Possibility 2: You have sent a service without establishing a connection
before.

Remedy:

Possibility 1: Re-establish the connection.

Possibility 2: Establish the connection and send the service once again.

16#01 / 16#03 ... 16#09, 16#10 (System error)

Meaning: Error concerning the PCP device.

Cause: -

Remedy: Inform the manufacturer of the PCP device.

13-52 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

16#01 | 16#13 (No CRL available)

Meaning: No CRL available.

Cause:

Possibility 1: You have not load a CRL.

Possibility 2: An existing connection has been interrupted, because you
have re-loaded the CRL.

Remedy: Project a CRL, re-establish the connection.

16#02 | 16#00 (LLI-Context-Check-Fail)

Meaning: The connection parameters between your controller board and
the PCP device do not match.

Cause: The number of the parallel services or the connection monitoring
is projected differently on the device and on the controller board.

Remedy: Correct the corresponding parameter in the CRL of the
controller board.

16#02 | 16#01 (Invalid-LLI-PDU)

Meaning: Impermissible service while establishing or interuppting the
connection.

Cause: A device received a PCP service (e.g. Read or Write), although
the connection was not established.

Remedy: Establish the connection.

16#02 | 16#02 (Invalid LLI-PDU)

Meaning: Impermissible service during data transfer

Cause: You have switched off the control without interrupting the
connection before. The connection with the communication partner was
still active. To re-establish the connection with service "Initiate" failed.
Now, the connection was interrupted.

Remedy: Re-establish the connection with the service "Initiate".

16#02 | 16#08 (Local Error)

Meaning: System error.

Cause: -

Remedy: Inform the manufacturer of the PCP device.

16#02 | 16#09 (Associate-Timeout)

Meaning: Waiting time for establishing the connection has elapsed.

Cause:

Possibility 1: Defective device.

Possibility 2: INTERBUS inactive.

Remedy:

Possibility 1: Change device.

Possibility 2: Put the INTERBUS to the status RUN.

16#02 / 16#11 (Invalid-LLI-PDU)

Meaning: Invalid service while interrupting the connection.

Cause: You tried to re-establish the connection during the interruption of
the connection.

Remedy: Wait approximately 30 to 100 ms before starting to establish a
new connection.

(The waiting time depends on the number of the INTERBUS modules.)

WinPCL 06VRS Function Blocks in WinPCL 13-53

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

16#02 / 16#12, 16#14 (Invalid-LLI-PDU)

Meaning: System error.

Cause: -

Remedy: Inform the manufacturer of the PCP device.

16#03 | 16#02 (Remote-Resource)

Meaning: The receiver buffers on the PCP device are full.

Cause: The PCP device does not respond or is not available.

Remedy: Verify the remote address in the CRL.

16#03 | 16#11 (PDL-Timeout)

Meaning: Internal communication acknowledgement not received within
the waiting time.

Cause: The PCP device could be defective.

Remedy: Inform the manufacturer of the PCP device.

16#03 | 16#12 (PDL disconnect)

Meaning: Repeated error during data transmission.

Cause: The PCP devices try to synchronize, but without success.

Remedy: Repeat service after approximately 30 to 100 ms. The waiting
time depends on the number of the INTERBUS modules. If the error
occurs several times, it is a system error. In this case inform the
manufacturer.

16#03 / 14hex, 15hex (PDL invalid)

Meaning: System error.

Cause: -

Remedy: Inform the manufacturer of the PCP device.

16#03 | 20hex (PDL-Cycle-Error)

Meaning: Fatal bus error.

Cause: -

Remedy: Verify the wiring. Provide for reliability of the bus (see
Application Description).

13-54 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Reject_Indication for PCP Blocks
Meaning of parameter ERROR_CODE in case of a service rejection (see
also Error Messages of the Communication with PCP Function Blocks
(General Information))

ERROR_CLASS

Specifies the type of the rejected message:

16#01: Error when requesting (Request) a confirmed service

16#02: Error when confirming (Response) an activated service

16#01 (Invoke-ID exists)

Meaning: The invoke ID already exists.

Cause: A parallel service with identic invoke ID has been sent.

Remedy: Use a free invoke ID.

16#02 (Max Services Overflow)

Meaning: To many service requests have been sent to a device.

Cause: A second service request has been sent to a device without
waiting for the service acknowledgement (confirmation) of the first service
request to this device. Or a CR was assigned mistakenly two times.

Remedy: Re-send the service request, when the confirmation arrived.
Verify if the CR exists several times.

16#03 (Service-Not-Supported-Connection-Oriented)

Meaning: Service is not supported as client.

Cause: A service that is not projected in the CRL was used in the user
program.

Remedy: Add the service by means of service "Load_CRL_Attribute_Loc"
to the supported services as client.

16#05 (PDU-Size)

Meaning: The maximum message length (PDU size) was exceeded.

Cause: You have send one of the services "Write" or
"Write_With_Name". However, this client contained to many data for the
PCP device.

Remedy: Verify the length parameter (length) in the object description of
the device.

16#07 (Max-Unconfirmed-Services-Overflow)

Meaning: Maximum number of unconfirmed services exceeded.

Cause: The primarily sent service is not completely executed yet (only for
unconfirmed services).

Remedy: Re-send the service.

WinPCL 06VRS Function Blocks in WinPCL 13-55

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Error Message, Service-Specific, Referring to PCP
Blocks
Meaning of the parameters ERROR_CLASS/ERROR_CODE in case of a
service-specific error message (see also Error Messages of the
Communication with PCP Function Blocks (General Information)):

16#00 | 16#01 (Max. PDU-Size insufficient)

Meaning: The sizes of the transmitter and receiver buffer of the two
communication devices do not match.

Cause: -

Remedy: Adapt the buffer sizes of the controller board with service
"Load_CRL_Attribute_Loc_Request" to those of the communication
partner.

16#00 | 16#02 (Feature not supported)

Meaning: The desired service is not supported.

Cause: The supported services of the two communication devices do not
match.

Remedy: Change the supported services of the controller board with
service "Load_CRL_Attribute_Loc".

16#00 | 16#04 (User Initiate denied)

Meaning: This error message depends on the manufacturer.

Cause: -

Remedy: Please, look at the device description.

16#05 | 16#01 (State-Conflict)

Meaning: A start or stop command was sent two times.

Cause: Error occurs only while the start or stop service is activated. As
the start or stop service has already been executed, the service can not
be executed once again.

Remedy: No remedial action necessary.

16#05 | 16#05 (Service-Parameter)

Meaning: An impermissible value was specified for the parameter
Access_Specification or the access occured with a too long name.

Cause: This error occurs only when service Get_OD is active.

Remedy: Please, look up the valid values in the device description and re-
send the service once again.

16#06 | 16#02 (Hardware Fault)

Meaning: The access on the object failed because of a hardware error.

Cause: E.g. missing peripheral voltage.

Remedy: Eliminate the hardware error.

16#06 | 16#03 (Object-Access-Denied)

Meaning: The object has restricted access rights.

Cause: Possibly, the object can only be read, but not be described or it is
password-protected.

Remedy: Please, look up the access rights in the object description.

13-56 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

16#06 | 16#05 (Object-Attribute-Inconsistent)

Meaning: A service parameter was indicated with an impermissible value.

Cause: E.g. an incorrect length indication or an impermissible subindex.

Remedy: Verify the parameter referring to the object description and re-
send the service with the corrected values.

16#06 | 16#06 (Object-Access-Unsupported)

Meaning: The used service can not be applied to this object.

Cause: E.g. a program sequence can be started or stopped, but not read.

Remedy: Please, look at the object description, which services are
permitted for this object.

16#06 | 16#07 (Object-Non-Existent)

Meaning: The object does not exist.

Cause: Probably, parameter "Index" has an incorrect value.

Remedy: Verify the index of the object referring to the object description
and re-send the service.

08hex | 16#00 (Application-Error)

Meaning: Device-specific error message; no error in communication.

Cause: -

Remedy: Please, look at your device description.

16#09 | 16#xx (Firmware-Error)

Meaning: You find the decription of this error message in the general
INTERBUS documentation "Services and error messages of the
firmware". In section "Error codes to user errors" you will find under code
16#09xx all error codes of error class 16#09.

Cause: -

Remedy: Please, look at your device description.

WinPCL 06VRS Function Blocks in WinPCL 13-57

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

PROFIBUS DP, Function Blocks
The following Firmware Function Blocks are available in the PLC
programming interface for controlling a PROFIBUS:

• Status information on the PROFIBUS master: DPM_STATE

• Single diagnosis of a PROFIBUS slave: DPM_SLDIAG

• Program Example for Control of a PROFIBUS

Note: These blocks may not be declared in the retain are (see
section Limitation of the Declaration of Function Blocks in the
Retain Area).

DPM_STATE
Status information on the PROFIBUS master, also see PROFIBUS DP,
Function Blocks

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area)

This function block supplies status information of the PROFIBUS DP
master, if the Boolean input READ is set to TRUE.

DPM_STATE.bmp

READ: Read status
OFFLINE: Operating state OFFLINE
STOP: Operating state STOP
CLEAR: Operating state CLEAR
OPERATE: Operating state OPERATE
GLOBAL: Global status bits (firmware data type DPGLOBAL)
SL_CFG: Table of configured slaves
SL_STATE: Table of active slaves
SL_DIAG: Table of slaves with diagnosis
READY: Function block is processed

Fig. 13-61: Firmware function block DP_STATE

Note: SL_DIAG contains the list of the slaves with active diagnosis.
The entries are cleared with scanning of the slave single
diagnosis; single diagnosis of a PROFIBUS slave
DPM_SLDIAG.

13-58 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Error variables
If a PROFIBUS interface is not provided, the error variables must be set
as follows:

S#ErrorFlg: TRUE

S#ErrorNr: 235

S#ErrorTyp: -242

DPM_SLDIAG
Single diagnosis of a PROFIBUS slave, also see PROFIBUS DP,
Function Blocks

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

The diagnosis information of a DP slave consists of standard diagnosis
information and - if provided - user-specific diagnosis information. At the
DIAG output, this function block supplies the standard diagnosis of the
slave which is addressed by the SLV_ADR input. The user-specific
diagnosis information is made available at the EX_DIAG output, with the
length (in bytes) of this information being specified at the EX_LEN output.

DPM_SLDIAG.bmp

READ: Read diagnosis
SLV_ADR: Slave address
DIAG: Diagnosis of the addressed slave (firmware data type
 DPSLDIAG)
EX_DIAG: Extended diagnosis data
EX_LEN: Length of the extended diagnosis data
READY: Function block is processed

Fig. 13-62: Firmware function block DPM_SLDIAG

Note: In order to avoid an unnecessary load on the bus, diagnosis
should be requested only if the function block DPM_STATE
activated the corresponding bit in the diagnosis field. This bit in
the diagnosis field is cleared with reading of the diagnosis.

Furthermore this function block must only be implemented in
controls with DP master configuration.

Error variables
If a PROFIBUS interface is not provided, the error variables must be set
as follows:

S#ErrorFlg: TRUE

S#ErrorNr: 235

S#ErrorTyp: -239

WinPCL 06VRS Function Blocks in WinPCL 13-59

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Program Example for Control of a PROFIBUS
(Also see PROFIBUS DP, Function Blocks)

In this program example, the single diagnosis of the slave with address 15
is read. The PC104-PROFIBUS interface is fitted to slot 2. The bus can
be started using the variable dp_start and can be stopped using the
variable dp_stop. If the master identifies a diagnosis of the slave, bit
SL_Diag[15] is activated. The status bits of the diagnosis, which are set in
field diag15, then can be read via the variable read_diag. The bit
SL_Diag[15] is cleared with reading of the diagnosis.

Dekl_FB_DP.bmp

Fig. 13-63: Declaration part for the program example

13-60 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Impl_FB_DP.bmp

Fig. 13-64: Implementation part for the program example

ASI Bus, Function Block with Data Type
The following Firmware Function Blocks are available in the PLC
programming interface for controlling a ASI Bus.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

ASIM_SLDIAG
System function block ASIM_SLDIAG serves to transmit the diagnostic
information to the slave, that is addressed via the inputs SLV_ADR and
CHANNEL. If the information is valid, output READY becomes active.

The diagnostic information is listed in structure ASISLDIAG.

WinPCL 06VRS Function Blocks in WinPCL 13-61

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

asim_sldiag.bmp

READ: Request of the diagnostic information
SLV_ADR: Address of the slaves. Valid values: 1...62
CHANNEL: Channel number. Valid values: 1, 2
DIAG: Diagnostic information of the slave; see type description
READY: For TRUE the information of the slave is valid

Fig. 13-65: ASIM-Bus: Function block ASIM_SLDIAG

Type description ASISLDIAG

typ_asisldiag.bmp

NO_RESPONSE: Device does not respond or is not available.
BUFFER_OVERFLOW: The number of the entries in the error buffer

exceeds the maximum possible number.
CONFIGURATION_FAULT: The determined IO or ID code differs from the

configured code.
NOT_ACTIVE: The slave is not active in the current

configuration.
CONFIGURATION_DATA: Retrieved IO/OD code
DEV_NOT_INITIALIZED: Slave was not initialized
DEV_NOT_ACTIVE: Slave not active
NO_FAULT: Slave indicates no error
DEV_MISSING: Slave not available
DEV_FOUND: At the moment not supported
DIAG_0/1/2: Slave-specific diagnostic information. See

manual of the manufacturer.
Fig. 13-66: Data type "Diagnostic information of a SLAVE"

13-62 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Error variables

For all errors of the block applies:
S#ErrorFlg: TRUE, S#ErrorTyp: -336,

S#ErrorNr: 235 occurs, if

• there’s no ASI master connection programmed in the I/O editor,

• there’s no PC104 ASI master connection plugged in the control,

• the address setting of the PC104 ASI master connection is incorrect.

S#ErrorNr: 1 (invalid input parameter) occurs, if

• the slave address is greater 62 or equal to 0,

• the channel number is unequal to 1 or 2.

S#ErrorNr: 6 (internal transmission error) occurs, if during the diagnostic
request an error, e.g. timeout, occurred.

Serial Interfaces, Function Blocks
Serial interfaces exist on different peripheries of the control. Special
firmware function blocks are available for addressing these interfaces via
PLC programs.

The following firmware function blocks are available for control of serial
interfaces:

• OPEN_COM Open serial interface

• CLOS_COM Close serial interface

• WR_BYTE Write data byte to serial interface

• RD_BYTE - Read data byte from serial interface

• CTRL_COM - Determine the state of the interface

• WR_STR - Write data string to serial interface

• RD_STR - Read data string from serial interface

• CLR_COM - Clear receive buffer and transmit buffer of serial interface

Note: These blocks may not be declared in the retain area (see also
Limitation of the Declaration of Function Blocks in the Retain
Area).

WinPCL 06VRS Function Blocks in WinPCL 13-63

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

OPEN_COM
OPEN_COM (Firmware Function Blocks, Serial Interfaces, Function
Blocks, COM data type) initializes the transfer channel to a general serial
interface, if the edge at the FB input OPEN is positive. From this interface,
data can be transmitted or received only if the output READY of the block
is logic one.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

Open_com.bmp

Fig. 13-67: Firmware function block OPEN_COM

Name Type Comment

OPEN: BOOL; 0 - FB not active
1 - Open interface

DEVICE: COM; Parameter of the serial interface

READY: BOOL; 0 - Interface is not opened or FB is not active
1 - Interface is open

 For handling of errors see Error Handling of Function Blocks for Serial
Interfaces.

CLOS_COM
With the edge at the FB input CLOS being positive, CLOS_COM
(Firmware Function Blocks, Serial Interfaces, Function Blocks) closes the
transfer channel to a general serial interface, thus clearing the transmitter
and receiver buffers of the interface. Data residing in the buffers after the
closing process has been initiated will get lost. The output READY becomes
logic one, only after the serial interface has been closed.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

Clos_com.bmp

Fig. 13-68: Firmware function block CLOS_COM

13-64 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Name Type Comment

CLOSE: BOOL; 0 - FB not active
1 - Close interface

DEVICE: COM; Parameter of the serial interface

READY: BOOL; 0 - Interface is not closed or FB is not active
1 - Interface is closed

For handling of errors see Error Handling of Function Blocks for Serial
Interfaces.

WR_BYTE
Using WR_BYTE (Firmware Function Blocks, Serial Interfaces, Function
Blocks), a data byte is written to the transmitter buffer of the interface
selected. As long as the FB input WRITE is logic one and the transmitter
buffer can still take up characters, the data byte, which is active at the FB
input DATA whenever the block is called up, is written to the buffer. The
data is emitted from the transmitter buffer by the PLC firmware, via the
appropriate serial interface.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

wr_byte.bmp

Fig. 13-69: Firmware function block WR_BYTE

Name Type Comment

WRITE: BOOL; 0 - FB not active
1 - Write data byte to the transmitter buffer

DEVICE: COM; Parameter of the serial interface

DATA: BYTE; Data byte to be sent

READY: BOOL; 0 - Data byte has not yet been written to the transmit
 buffer or the FB is not active
1 - Data byte has been written into the transmit buffer

For handling of errors see Error Handling of Function Blocks for Serial
Interfaces.

WinPCL 06VRS Function Blocks in WinPCL 13-65

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

RD_BYTE
Using RD_BYTE (Firmware Function Blocks, Serial Interfaces, Function
Blocks), a data byte is read from the receiver buffer of the interface
selected. As long as the FB input READ is logic one and the receiver
buffer is not empty, a data byte is read from the buffer and assigned to
the FB output DATA whenever the block is called up. The data is
accepted from the appropriate serial interface to the receiver buffer by the
PLC firmware.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

rd_byte.bmp

Fig. 13-70: Firmware function block RD_BYTE

Name Type Comment

READ: BOOL; 0 - FB not active
1 - Read data byte from the receiver buffer

DEVICE: COM; Parameter of the serial interface

DATA: BYTE; Received data byte

READY: BOOL; 0 - Data byte has not yet been read from the receiver
 buffer or the FB is not active
1 - Data byte has been read from the receiver buffer

For handling of errors see Error Handling of Function Blocks for Serial
Interfaces.

13-66 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CTRL_COM
The function block CTRL_COM (Firmware Function Blocks, Serial
Interfaces, Function Blocks) is intended to return the state of a serial
interface. To achieve this, the interface parameters are applied to the FB
input DEVICE in the form of a COM structure. If the input CTRL is TRUE,
the interface parameters are determined and applied to the outputs. The
output READY becomes TRUE, if all information is provided.

The following status information can be evaluated:

• serial interface open or closed,

• number of characters residing in the receiver or transmitter buffer of
the serial interface.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

ctrl_com.bmp

Fig. 13-71: Firmware function block CTRL_COM

Name Type Comment

CTRL: BOOL; 0 - FB not active
1 - Determine state

DEVICE: COM; Parameter of the serial interface

OPEN: BOOL; 0 - Interface not open
1 - Interface open

CLOSE BOOL 0 - Interface not closed
1 - Interface closed

RX_BUFFER INT 0 - No characters in receiver buffer or
 interface closed
>0 - At least one character in receiver buffer

TX_BUFFER INT 0 - No characters in transmitter buffer or
 interface closed
>0 - At least one character in transmitter buffer

READY: BOOL; 0 - State of interface not evaluated
1 - State of interface evaluated

For handling of errors see Error Handling of Function Blocks for Serial
Interfaces.

WinPCL 06VRS Function Blocks in WinPCL 13-67

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WR_STR
Using WR_STR (Firmware Function Blocks, Serial Interfaces, Function
Blocks), a data string is written to the transmitter buffer of the interface
selected. The character active at the input STR_END is added to the data
string as the string delimiter. If the input is not activated, the character
with the ASCII code 0 is added to the data string. The string is written to
the transmitter buffer, if the buffer provides enough unassigned memory
for this string. The data is emitted from the transmitter buffer by the PLC
firmware, via the appropriate serial interface.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

wr_str.bmp

Fig. 13-72: Firmware function block WR_STR

Name Type Comment

WRITE: BOOL; 0 - FB not active
1 Write data string into the transmitter buffer

DEVICE: COM; Parameter of the serial interface

DATA: BYTE; Data string to be sent

STR_END: CHAR; Data string delimiter

READY: BOOL; 0 - Data string has not yet been written to the
 transmitter buffer or the FB is not active
1 - Data string has been written to the transmitter buffer

For handling of errors see Error Handling of Function Blocks for Serial
Interfaces.

13-68 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

RD_STR
Using RD_STR (Firmware Function Blocks, Serial Interfaces, Function
Blocks), a string is read from the receiver buffer of the interface selected.
The end of the string is reached when the character read from the
receiver buffer is equal to the string delimiter active at the input
STR_END. In this case, the output READY becomes logic one. If the
input STR_END is not activated, the ASCII code 0 is assigned to the
string delimiter as a standard.

A string variable which is preset at the DATA output is filled with characters
until the string delimiter has been read out. The string delimiter does not
form a part of the output string. The content of the string variable is cleared,
if no string delimiter was received before 255 characters were read. If there
are still characters in the transmitter buffer, the string variable is filled again
with these characters until the string delimiter is reached.

The data of the serial interface is applied in the receiver buffer through the
PLC firmware.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

rd_str.bmp

Fig. 13-73: Firmware function block RD_STR

Name Type Comment

READ: BOOL; 0 - FB not active
1 - Read data string from receiver buffer

DEVICE: COM; Parameter of the serial interface

STR_END: CHAR; String delimiter

DATA: BYTE; Received data string

READY: BOOL; 0 - Data string has not yet been read completely from
 the receiver buffer or the FB is not active
1 - Data string has been read from the receiver buffer

For handling of errors see Error Handling of Function Blocks for Serial
Interfaces.

WinPCL 06VRS Function Blocks in WinPCL 13-69

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CLR_COM
Using the function block CLR_COM (Firmware Function Blocks, Serial
Interfaces, Function Blocks), the receiver and transmitter buffers of an
open serial interface are cleared. Data residing in the buffers after the
clearing process has been initiated will get lost.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

clr_com.bmp

Fig. 13-74: Firmware function block CLR_COM

Name Type Comment

CLR: BOOL 0 - FB not active
1 - Clear receiver and transmitter buffers

DEVICE: COM Parameter of the serial interface

READY: BOOL 0 - Receiver or transmitter buffers were not cleared
 or the FB is not active
1 - Receiver and transmitter buffers were cleared

For handling of errors see Error Handling of Function Blocks for Serial
Interfaces.

Error Handling of Function Blocks for Serial Interfaces
The function blocks which have been written to cannot be executed
correctly because of programming or hardware errors. In such a case,
error handling reports the cause of the error.

S#ErrorTyp Function block

-106 OPEN_COM

-107 CLOS_COM

-110 WR_BYTE

-111 RD_BYTE

-112 CTRL_COM

-203 RD_STR

-204 WR_STR

-227 CLR_COM

13-70 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

S#ErrorNr Error

238 Interface not opened

240 Invalid input parameter DEVICE, COM

241 Invalid input parameter SERNR, COM

242 Invalid input parameter BAUD, COM

243 Invalid input parameter DATA, COM

244 Invalid input parameter PARITY, COM

245 Invalid input parameter STOP, COM

246 Invalid input parameter PROTOKOL, COM

247 Invalid input parameter HANDSH, COM

248 Interface does not exist

249 All COM interfaces opened

252 General interface error

253 Transmitter buffer full

254 Receiver buffer full

255 Timeout acknowledgement telegram

Program Example for Control of serial Interfaces
Data are to be exchanged between two serial interfaces of the PLC card:
After activation of the OPEN switch, byte 16#F8 is sent by interface 3 and
the string ABCDE is sent by interface 4, with character F being the end
character. The transmitter and receiver buffers of the interface are cleared
with activation of the CLEAR switch. The transmission is completed with
activation of the CLOSE switch.

ST COM.bmp

Fig. 13-75: Definition of the serial interfaces in the structure "COM"

Setting of the interfaces is done with the first step. This is effected by
transmission of the values to the individual interfaces.

• com3: COM (*interface COM 3*)

• com4: COM (*interface COM 4*)

WinPCL 06VRS Function Blocks in WinPCL 13-71

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Serielle Schnittst_01.bmp

Fig. 13-76: Setting the serial interfaces

Oeffn_Serielle Schnittst.bmp

Fig. 13-77: Opening the serial interfaces

13-72 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Schreib_Serielle Schnittst.bmp

Fig. 13-78: Writing to serial interfaces

Löschen_Serielle Schnittst.bmp

Fig. 13-79: Clearing the transmitter and receiver buffers of the serial interfaces

WinPCL 06VRS Function Blocks in WinPCL 13-73

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Lesen_Serielle Schnittst.bmp

Fig. 13-80: Reading a serial interface

Schliessen_Serielle Schnittst.bmp

Fig. 13-81: Closing the serial interfaces

13-74 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

status_serielle_schnittstelle.bmp

Fig. 13-82: Status test of a serial interface

WinPCL 06VRS Function Blocks in WinPCL 13-75

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

This results in the following signal play for the present example:

status_serielle_schnittstelle_01.bmp

Fig. 13-83: Status inquiry for the above example

Function Blocks for the HMI Interface (GUI_SK16)
The GUI_SK functionality describes a mechanism for a screen-oriented
machine operation.

Operating principle

A soft-key bar is assigned to each screen in the "graphical user interface".

Three bits of information are assigned to each soft key:

• Input, flag or output, which is affected with actuation of the
corresponding soft key.

• Input, flag or output, whose status information causes the soft key to
appear normal or pressed.

• Input, flag or output, whose status information causes the soft key to
appear normal or lit.

Depending on the active screen, the graphical user interface delivers the
addresses of the outputs or flags, which are to be affected by pressing the
soft keys, to the PLC.

With execution of the FB in the PLC program, these outputs or flags are
activated when the soft keys are actuated. These outputs or flags are
cleared if the soft keys are no longer actuated or if the screen is changed.

The outputs and flags are processed in the PLC program and the relevant
machine functions are executed.

’GUI_SK’/GUI_SK16 serve for transmitting the signal status of the soft
keys ’SK1 ... SK8(...SK16)’. The softkeys can be derived from any input. A
typical example is the derivation from the machine function key of a BTV
as shown in the following example.

13-76 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

GUI_SK16
For operating the machine, the BTV machine keys R1 to R8 (and L1 to
L8) are linked to the function block inputs SK1 to SK16 in the PLC
program.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

The block itself is enabled with the "ENABLE" input.

The READY signal is applied to its output.

GUI_SK16.bmp

ENABLE: Enable (FALSE - no execution, TRUE - execution)
SK1: Connection for machine function key 1
to
SK16: Connection for machine function key 16
READY: Acknowledgement (FALSE - no execution, TRUE - execution)

Fig. 13-84: Firmware function block GUI_SK16

Note: Only one instance of the function block GUI_SK16 must be
active in a PLC resource.

This instance should be programmed in the leading program
in the leading cyclical task at the leading position.

WinPCL 06VRS Function Blocks in WinPCL 13-77

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Program Example of HMI Link via GUI_SK16
The access to the machine function keys is enabled at resource level in
the IO table.

mleys_io.bmp

Fig. 13-85: IO table with access to machine function keys

The variables can either be distributed via VAR GLOBAL / VAR
EXTERNAL or - as seen in the example - declared in the program.

mleys_dekl.bmp

Fig. 13-86: Declaration of the machine function keys in a program

13-78 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

They are used in the first network of the implementation of the program.

mleys_impl.bmp

Fig. 13-87: GUI_SK16 - use in the implementation

Miniature Control Panels, Function Blocks for Data Exchange with the
PLC

WinPCL provides firmware blocks to couple miniature control panels to
the PLC.

Note: These blocks may not be declared in the retain area (see
section Limitation of the Declaration of Function Blocks in the
Retain Area).

BTXX, BTXX_2
The function blocks (FB) BTXX and BTXX_2 realize the communication
between the PLC and the HMI control panels BTV04, BTV05 and BTC06
via a serial interface. Thereby, data and visualization data are cyclically
exchanged. The two blocks differ from eachother in the quantity of the
data to be transmitted:

• BTXX: 32 bits

• BTXX_2: 64 bits

The I/O data are up-dated in each PLC cycle.

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

WinPCL 06VRS Function Blocks in WinPCL 13-79

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

BTXX BTXX_2

Fig. 13-88: Interfaces of the blocks

 Input / output variables Description

ENABLE The execution of the FB is activated when the
ENABLE input is set. The interface is automatically
opened. It is not allowed to program an OPEN_COM
for the selected interface before. This functionality is
integrated in the FB.

If this input is deleted, the connection to the control
panel is interrupted and the interface is closed again
(no CLOS_COM).

EN_GUI Input EN_GUI serves to activate the GUI_SK
functionality for the two machine control keys at the
respective control panel.

DEVICE Input "Device" contains the parameter set of the used
serial interface. Due to the used Rexroth
communication protocol (SIS = Serial Indramat
Interface) the following values are predefined:
BAUD: 19 (38400 bauds)
PARITY: 3 (EVEN)
PROTOKOL: 4 (SIS protocol).

RS_MODE 0 : RS-232,
1 : RS-485,
2 : RS-422

BTX_ADR Station address of the connected control panel

TO_BTX 32 bits or 64 bits input memory for PLC function keys

The applied signals are send to the control panel as
Boolean inputs for the PLC function keys.

KEY_L Status ’Control panel’ ’Machine control key’ on the left

KEY_R Status ’Control panel’ ’Machine control key’ on the
right

KEY_S1 Control panel-specific status 1 (optional e.g., life-man-
switch)

KEY_S2 Control panel-specific status 2 (optional)

The use of the status bits are independant from the
connected control panel.

FR_BTX 32 bits or 64 bits output memory for PLC function
keys

The applied signals are send by the control terminal
as Boolean outputs for the PLC function keys.

13-80 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

 Input / output variables Description

STATE Function block status:

0: Reset status

1: Verify if the FB input parameters are valid

2: Initialize interface

3: Initialize SIS communication distributor

4: Send initaliszation telegram to control terminal

5: Wait for initalization confirmation of the control
terminal

6: Communication active

READY Communication with control panel active

Fig. 13-89: Input / output variables BTXX and BTXX_2

MotionControl Extension of the PLC
To extend the functional range of an ISP in relation to a Motion Control
the PLC interface provides the following function blocks:

Function block Brief description S#ErrorTyp

CALC_LINEAR_Y Calculation of the Y value of an default X value when the X-Y value table is
predetermined -303

PID_CONTROL PID control (P, I, PI, PD, PID control) -304

AVERAGE_REAL Calculation of the floating average value with 64 REAL values -305

AVERAGE_DINT Calculation of the floating average value with 1023 DINT values -306

PT2_FILTER PT2 filter (low pass filter) -310

Fig. 13-90: Survey of firmware function blocks to extend the functional range of
an ISP in relation to a Motion Control

Note: These blocks may not be declared in the retain area (see
section Limitation of the Declaration of Function Blocks in the
Retain Area).

WinPCL 06VRS Function Blocks in WinPCL 13-81

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CALC_LINEAR_Y

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

Function block CALC_LINEAR_Y calculates linearized for a default X
value of a predetermined X-Y value table the respective Y value.

CALC_LINEAR_Y.bmp

Fig. 13-91: FW function block CALC_LINEAR_Y

 Input / output variables Description

EXECUTE Processing release of the function block

X_VALUE Default X value XSEARCH

DISABLE_SORT Necessity to sort the X-Y value table
(FALSE == required,
TRUE == not required)

NO_OF_PAIRS Number of valid X-Y value pairs in the value table
(valid: >= 2)

TABLE_PTR Pointer on value table (Array of Struct)

DONE Calculation of the Y value completed,
output variables valid

ACTIVE Calculation of the Y value active,
output variables invalid

ERROR_NO Equivalent to S#ErrorNr
(error-free == 0)

Y_VALUE Searched Y value YSEARCH

Fig. 13-92: Input / output variables CALC_LINEAR_Y

Note: Pointer TABLE_PTR has to refer to an ARRAY
VALUE_TABLE whose error message type is a structure
COORDINATE_PAIR consisting of two DINT types X and Y.

VALUE_TABLE[Number_of_Pairs] OF COORDINATE_PAIR

with

COORDINATE_PAIR [X; Y] with X {DINT}; Y {DINT}

The number of elements in the value table "Number_of_Pair"
is not limited, however, if DISABLE_SORT was not activated,
the number should not be too high so that the cycle time is not
too heavily charged.

Brief Description

13-82 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

CALC_LINEAR_Y_Table.bmp

Fig. 13-93: Structure of the value table

Depending on the input DISABLE_SORT and after the processing release
of the function block by input EXECUTE function block CALC_LINEAR_Y
conditionally arranges the input data array in ascending order according to
the X values and writes these back on the input data array.

Note: Therefore, the sorting algorithm is completed within a PLC
cycle.

It is required to predetermine an already sorted value table
and set the entry DISABLE_SORT on TRUE in order to avoid
a heavily increased cycle time when using a larger value table.
If this is not possible because of the present data or can not
be ensured, it is required to activate the sorting algorithm only
for the first application of the value table.

After the conditionally executed sorting of the input value pairs the
corresponding Y value is calculated for the X value predetermined at entry
X_VALUE. Thereby, the X value of the searched Y value has to be
between two default X-Y value pairs.

Note: The AB link between two default X-Y value pairs (XA;YA) Å
(XB;YB) is always interpreted as straight line AB.

Note: The value table, i. e. the ARRAY is always evaluated as of
element 0 and thus, no leading element can be ignored.

Note: With regard to the charge of the PLC cycle time the calculation
of the Y value is divided in two PLC cycles time when sorting is
activated (DISABLE_SORT == FALSE).

Functional Description

WinPCL 06VRS Function Blocks in WinPCL 13-83

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Function block CALC_LINEAR_Y can generate the following system error
codes:

System variable Value Description

S#ErrorFlg TRUE

S#ErrorTyp -303

S#ErrorNr 1 Invalid input parameter

S#ErrorNr 2 Overrange (XSEARCH > XMAX)

S#ErrorNr 3 Overrange (XSEARCH < XMIN)

S#ErrorNr 7 Index error (XA == XB)

S#ErrorNr 208 System error (State Machine)

Fig. 13-94: Error codes CALC_LINEAR_Y

The I/O data are up-dated in each PLC cycle.

For a predetermined value table the Y value YSEARCH is searched for a
default X value XSEARCH = 12.327. The value table contains four value
pairs to be considered. Thus, input NO_OF_PAIRS is set to 4. As the
value table is not given in an ascending order the sorting algorithm has to
be activated (DISABLE_SORT == FALSE). After the processing release
with EXECUTE the function block calculates a Y value YSEARCH = 23.031
for the default X value XSEARCH = 12.327.

Default value table (FLOAT) ARRAY – unsorted (DINT) ARRAY - ascending order (DINT)

X Y X Y X Y

0 5.223 7.999 5223 7999 3712 11877

1 3.712 11.877 3712 11877 5223 7999

2 16.121 24.222 16121 24222 9653 22192

3 9.653 22.192 9653 22192 16121 24222

Fig. 13-95: Value table for application example

CALC_LINEAR_Y_Diagramm.bmp

Fig. 13-96: Diagram for application example

Error Handling

Application Example

13-84 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

PID_CONTROL

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

Depending on the wiring of the input variables function block
PID_CONTROL provides the control functionalities "P control", "PI
control", "PD control", "I control" and "PID control".

Each illustrated control can feature not only a positive but also a negative
sense of action. Besides the virtual control function each control type has
the possibility to restrict the regulating variable, an anti-reset windup
behavior, the capability to shut down the control, as well as a preset
functionality for the jerk-free connection of the control.

PID_CONTROL.bmp

Fig. 13-97: FW function block PID_CONTROL

Input / output variables Description

EXECUTE Processing release of the function block

PRESET Activation of the preset input as
controlled variable x
(FALSE == inactive; TRUE == active)

PAUSE Activation of the control shutdown
(FALSE == inactive; TRUE == active)

SETPOINT Reference variable w (command value)

ACTUAL_VALUE Controlled variable x (actual value)

PRESET_VALUE Preset value of the controlled variable x
(actual value)

POS_LIMIT Restriction of the regulating variable -
Maximum output value of regulating variable y

NEG_LIMIT Restriction of the regulating variable -
Minimum output value of regulating variable y

P_CONTROL Proportional control gain KR

(P fraction; 0 == deactivated)

I_CONTROL Control reset time TN in [ms]
(I fraction; 0 == deactivated)

D_CONTROL Control rate time TV in [ms]
(D fraction; 0 == deactivated)

Brief Description

WinPCL 06VRS Function Blocks in WinPCL 13-85

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Input / output variables Description

DONE Calculation of regulating variable y completed,
output variable valid

ACTIVE Calculation of regulating variable y active

ERROR_NO Equivalent to S#ErrorNr
(error-free == 0)

POS_LIMIT_ACK Signal "Maximum restriction of output variable"
(FALSE == inactive; TRUE == active)

NEG_LIMIT_ACK Signal "Minimum restriction of output variable"
(FALSE == inactive; TRUE == active)

CONTROL_VALUE Control output value – regulating variable y

ACT_SCAN_TIME Control cycle time in [ms]

Fig. 13-98: Input / output variables PID_CONTROL

Note: Because of the cyclic activation of the function block and the
following output of the regulating variable the behavior of
output DONE and ACTIVE is as follows:

DONE==FALSE, ACTIVE==FALSE Å Inactive

DONE==TRUE, ACTIVE==TRUE Å Active

DONE==FALSE, ACTIVE==TRUE Å Pause

DONE==TRUE, ACTIVE==FALSE Å Error

Regelkreis.bmp

Fig. 13-99: Block diagram 'Control loop'

Provided that the scanning time TA is negligible relative to the time
constants TN and TV of the control loop an analog control can be
transformed to a digital control. The integration of the analog control is
approximated by an addition (trapeze approximation), the differentiation
by a subtraction (difference formation backwards).

() () () ()

⋅+⋅+⋅= ∫ dt

txd
Tdttx

T

1
txKty d

Vd
N

dR

Fig. 13-100: Analog PID control

() ()

−⋅++⋅

⋅
+⋅= ∑

=
−−

k

0i
1k,dk,d

A

V
1i,di,d

N

A
k,dRk xx

T
T

xx
T2

T
xKy

Fig. 13-101: Digital PID control

The digital PID control can be transformed into a recursive form which
constitutes the basis of function block PID_CONTROL.

() A1k T1kfüry ⋅−−

Fig. 13-102: Basis to transform into recursive form

Theoretical bases

13-86 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

() () ()

+⋅−⋅++⋅

⋅
+−⋅+= −−−−− 2k,d1k,dk,d

A

V
1k,dk,d

N

A
1k,dk,dR1kk xx2x

T

T
xx

T2

T
xxKyy

Fig. 13-103: Digital PID control - Recursive form (parallel form)

2k,d21k,d1k,d01k1k xbxbxbyay −−− ⋅+⋅+⋅+⋅=

Fig. 13-104: Digital PID control – General coefficient

In the first (inactive) POU cycle function block PID_CONTROL initializes
the deviation xd,k-1 and xd,k-2 to xd,k as well as the regulating variables yk

and yk-1 to the preset value PRESET_VALUE.

If the control variables shall be reintialized for jerk-free connection of the
control to the runtime of the POE input PRESET has to be set when the
function block (EXECUTE == FALSE) is deactivated.

VALUE_PRESETyy

xwxxx

1kk

k,d2k,d1k,d

==

−===

−

−−

Fig. 13-105: Initialization of the internal controlled variables

Note: At the time of the initialization of the control variables during
the first POU cycle it has to be ensured that the input variables
SETPOINT (reference variable w) and ACTUAL_VALUE
(controlled variable x) have valid values (measuring ranges).

Note: The regulating variable restriction is also active during the
initialization when the values are valid (POS_LIMIT >
NEG_LIMIT).

The function block can be used as one of the illustrated controls
depending on the connection of the input variables P_CONTROL,
I_CONTROL and D_CONTROL. The function block allows to adapt the
control type during the runtime of the control.

Control type P_CONTROL I_CONTROL D_CONTROL

P control Valid value Zero Zero

I control Zero Valid value Zero

PI control Valid value Valid value Zero

PD control Valid value Zero Valid value

PID control Valid value Valid value Valid value

Fig. 13-106: Possible control types PID_CONTROL

After the processing release with EXECUTE function block
PID_CONTROL controls the controlled variable x on the basis of the
selected control type on the reference variable w. Thereby, the regulating
variable y can either have a positive or a negative sense of action.

Functional Description

WinPCL 06VRS Function Blocks in WinPCL 13-87

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

If the regulating variable y reaches the regulating variable restriction
POS_LIMIT or NEG_LIMIT, thus, the regulating variable is limited to the
respective regulating variable restriction and anti reset windup measures
for the integral fraction of the control are started. The anti reset windup
measures ensure that in case of a stationary remaining control deviation
xd,k the integral fraction is not further integrated and therefore, the reaction
time of the control is decelerated when the control deviation changes
(sign change). The limitation of the regulating variable y to the regulating
variable restriction POS_LIMIT or NEG_LIMIT is signaled at the control by
the Boolean output POS_LIMIT_ACK or NEG_LIMIT_ACK.

If the input PAUSE is activated during the runtime of function block
PID_CONTROL, the current control deviation xd,k is set to zero and the
control is thus stopped. In the second activation cycle input PAUSE
affects indirectly on xd,k-1 and in the third activation cycle on xd,k-2. Input
PAUSE is suited to keep the regulating variable y in the settled status.

Output ACT_SCAN_TIME specifies the time difference between the
calculation time of the control difference xd,k and the calculation time of
the control difference xd,k-1 and allows thus to provide the regulating
variable with a time marker.

Note: Output ACT_SCAN_TIME is also carried along during the
activation of input PAUSE.

Note: The control coefficients are calculated when the control type or
the time difference change.

In order to avoid that the PLC cycle time is charged by a
permanent calculation of the coefficient, it is required to use
the function block in a time-controlled task.

Function block PID_CONTROL can generate the following system error
codes:

System variable Value Description

S#ErrorFlg TRUE

S#ErrorTyp -304

S#ErrorNr 1 Invalid input parameter

S#ErrorNr 208 System error (State Machine)

Fig. 13-107: Error codes PID_CONTROL

The I/O data are up-dated in each PLC cycle.

Error Handling

13-88 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

AVERAGE_REAL

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

Function block AVERAGE_REAL calculates the floating average value
form maximum 64 REAL values.

AVERAGE_REAL.bmp

Fig. 13-108: FW function block AVERAGE_REAL

 Input / output variables Description

EXECUTE Processing release of the function block

NO_OF_VALUES Number of values with which the average value is
to be calculated
(valid: 1..64)

ACTUAL_VALUE Current input value

DONE Calculation of the floating average value
completed, output variables valid

ACTIVE Calculation of the floating average value active

ERROR_NO Equivalent to S#ErrorNr
(error-free == 0)

AVERAGE Floating average value

Fig. 13-109: Input / output variables AVERAGE_REAL

Note: Because of the cyclic activation of the function block and the
following output of the regulating variable the behavior of
output DONE and ACTIVE is as follows:

DONE==FALSE, ACTIVE==FALSE Å Inactive

DONE==TRUE, ACTIVE==TRUE Å Active

DONE==TRUE, ACTIVE==FALSE Å Error

After the processing release with EXECUTE function block
AVERAGE_REAL reads the REAL value at the input ACTUAL_VALUE in
an internal FIFO register. Then, the average value of the whole FIFO
register whose data width was determined by means of NO_OF_VALUES
is calculated and emitted at output AVERAGE.

AVERAGE_REAL_FIFO.bmp

Fig. 13-110: FIFO register AVERAGE_REAL

Brief Description

Functional Description

WinPCL 06VRS Function Blocks in WinPCL 13-89

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Function block AVERAGE_REAL can generate the following system error
codes:

System variable Value Description

S#ErrorFlg TRUE

S#ErrorTyp -305

S#ErrorNr 1 Invalid input parameter

S#ErrorNr 208 System error (State Machine)

Fig. 13-111: Error codes AVERAGE_REAL

The I/O data are up-dated in each PLC cycle.

AVERAGE_DINT

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

Function block AVERAGE_DINT calculates the floating average value
from maximum 1023 DINT values.

AVERAGE_DINT.bmp

Fig. 13-112: FW function block AVERAGE_DINT

Input / output variables Description

EXECUTE Processing release of the function block

NO_OF_VALUES Number of values with which the average value is
to be calculated
(valid: 1..1023)

ACTUAL_VALUE Current input value

DONE Calculation of the floating average value
completed, output variable valid

ACTIVE Calculation of the floating average value active

ERROR_NO Equivalent to S#ErrorNr
(error-free == 0)

AVERAGE Floating average value

Fig. 13-113: Input / output variable AVERAGE_DINT

Note: Because of the cyclic activation of the function block and the
following output of the regulating variable the behavior of
output DONE and ACTIVE is as follows:

DONE==FALSE, ACTIVE==FALSE Å Inactive

DONE==TRUE, ACTIVE==TRUE Å Active

DONE==TRUE, ACTIVE==FALSE Å Error

Error Handling

Brief Description

13-90 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

After the processing release with EXECUTE function block
AVERAGE_DINT reads cyclically the DINT value at input
ACTUAL_VALUE in an internal FIFO register. Then, the average value of
the whole FIFO register whose data width was determined by means of
NO_OF_VALUES is calculated and emitted at output AVERAGE.

AVERAGE_DINT_FIFO.bmp

Fig. 13-114: FIFO register AVERAGE_DINT

Function block AVERAGE_DINT can generate the following system error
codes:

System variable Value Description

S#ErrorFlg TRUE

S#ErrorTyp -306

S#ErrorNr 1 Invalid input parameter

S#ErrorNr 208 System error (State-Machine)

Fig. 13-115: Error codes AVERAGE_DINT

The I/O data are up-dated in each PLC cycle.

Functional Description

Error Handling

WinPCL 06VRS Function Blocks in WinPCL 13-91

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

PT2_FILTER

Note: This block may not be declared in the retain area (see section
Limitation of the Declaration of Function Blocks in the Retain
Area).

Function block PT2_FILTER serves for low pass filtering of a signal, i. e.
in its function as transfer element the signal fractions with low frequencies
are unchanged transmitted and the fractions with high frequencies are
attenuated or blocked.

PT2_FILTER.bmp

Fig. 13-116: FW function block PT2_FILTER

 Input / output variables Description

EXECUTE Processing release of the function block

ACTUAL_VALUE Current input value

GAIN Gain KP

ATTENUATION Attenuation D

MAX_FREQUENCY Limit frequency fGrenz

DONE Calculation of filtered value completed,
output variables valid

ACTIVE Calculation of filtered value active

ERROR_NO Equivalent to S#ErrorNr
(error-free == 0)

CONTROL_VALUE Filtered value

ACT_SCAN_TIME Filter cycle time tAbtast in [ms]

Fig. 13-117: Input / output variables PT2_FILTER

Note: Because of the cyclic activation of the function block and the
following output of the regulating variable the behavior of
output DONE and ACTIVE is as follows:

DONE==FALSE, ACTIVE==FALSE Å Inactive

DONE==TRUE, ACTIVE==TRUE Å Active

DONE==TRUE, ACTIVE==FALSE Å Error

Brief Description

13-92 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

After the processing release with EXECUTE function block 0PT2_FILTER
calculates cyclically the filtered value CONTROL_VALUE.

For this purpose, the analog transfer function of the PT2 element is
calculated time-restricted in compliance with Shannon’s theorem which
restricts the maximum usable frequency range to half of the scanning
frequency fAbtast.

GrenzAbtast f2f ⋅>

Fig. 13-118: Shannon’s theorem

() ()
()

2
0

2

0

P

e

a

ss
D21

K
sx
sx

sG

ωω
+⋅⋅+

==

Fig. 13-119: Transfer function of a PT2 element

Note: The filter coefficients are recalculated when the scanning time
changes, whereby the scanning time corresponds to the POU
cycle time.

To avoid to charge the PLC cycle time by permanent
calculation of the coefficients, it is required to use the function
block in a time-controlled task.

Function block PT2_FILTER can generate the following system error
codes:

System variable Value Description

S#ErrorFlg TRUE

S#ErrorTyp -310

S#ErrorNr 1 Invalid input parameter

S#ErrorNr 2 Overrange (fAbtast <= 2 * fGrenz)

S#ErrorNr 208 System error (State-Machine)

Fig. 13-120: Error codes PT2_FILTER

The I/O data are up-dated in each PLC cycle.

Functional Description

Error Handling

WinPCL 06VRS Function Blocks in WinPCL 13-93

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

13.4 User Function Blocks

The programming system permits the user to write function blocks
himself, which can be used as re-usable units in the form of a supplement
to the standard and firmware function blocks. The user function blocks can
import other user functions or user function blocks and use them in the
same way as the standard and firmware functions or function blocks.

A structuring with SFC sequential function chart elements is possible,
external variables can be used.

Import Rules, Function Blocks
A user function block can use user, standard and firmware functions as
well as user, standard or firmware function blocks:

The used function is a
standard- or firmware
function

The used function is a
user function

The used function block is
a standard or firmware
function block

The used function block is
a user function block

Direct use without
import or declaration
according to the
selected input language.

Automatic import of the
function, at least its declaration
should exist.

Use according to the selected
input language.

No import necessary, as
contained in the standard
library.

A function block requires
space for the data
pertaining to its assignment
(counter value, runtime, and
the like).

The required space has to
be reserved by the unit
wishing to use it.

Declaration of the
assignment of the FB in a
separate declaration editor.

Use according to the
selected input language.

Automatic import of the
function block, at least its
declaration should exist.

Declaration of the
assignment of the FB.

Use according to the
selected input language.

The nesting can be continued to any depth desired.

It is forbidden that function block ‘A’ uses itself again (recursion) or that
function block ‘A’ uses function block ‘B’ and the latter uses function block
‘A’ again, etc.

13-94 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

13.5 Limitation of the Declaration of Function Blocks in the
Retain Area

In principle, the declaration of function blocks in the retain area is
permitted according to IEC-61131-3.

However, there are limitations which must be observed whenever Rexroth
system function blocks are used. The following list specifies the function
blocks which may not be declared in the retain area.

Note: These blocks may neither be declared directly in the retain
area nor indirectly via blocks which are declared in the retain
segment themselves.

Timer function blocks
Programming of timer stages is not permitted in the retain area.

• TP

• TON

• TOFF

• FLASH

Serial interface
Function blocks for supporting serial interfaces in the PLC application
program:

• OPEN_COM

• CLOS_COM

• BTXX

• BTXX_2

Bus communication function blocks

Communication with other control components
Data exchange with other control components is achieved using function
blocks via special data channels in the common dual-ported RAM.
Usually, more than one communication cycle is required for data
exchange with the CNC.

The progress made in data exchange is mapped as state-machine in the
particular function block concerned. In other words, the internal state of
the function block depends on the state of the DPR. However, the DPR is
always re-initialized after a reset.

Current communication cycles will be lost. As a result, the state-machine
in the FB is invalid, if this FB has been declared to be remanent.

WinPCL 06VRS Function Blocks in WinPCL 13-95

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The following function blocks may not be declared to be remanent:

MTCNC SYNAX

NC memory selection

SEL_MEM

ACT_MEM

Process data channel

AXD_WR

AXD_RD

DCD_RD

DCD_WR

MTD_WR

MTD_RD

NCVAR_RD

NCVAR_WR

OTD_WR

OTD_RD

TL_DELETE

TL_ENABLE

TL_MOVE

TL_RESET

TLBD_RD

TLBD_WR

TLD_WR

TLD_RD

TLED_RD

TLED_WR

MC_CHANGE_PHASE

MC_RD_PARAMETER

MC_WR_PARAMETER

MC_WR_LISTDATA

MC_DIAGNOSIS

MC_RD_LISTDATA

MC_RD_DATASTATUS

MC_ABORT_TRANSMISSION

MC_RW_PTR_TLG

MC_RD_PHASE

MC_RD_ATTRIBUTE

MC_RD_NAME

MC_RD_UNIT

MC_RD_MIN_VALUE

MC_RD_MAX_VALUE

MC_RD_ELEMENT

MC_WR_ELEMENT

MC_RD_ARRAY

MC_WR_ARRAY

MC_RW_ARRAY_TLG

Fig. 13-121: Coupling with other control components

13-96 Function Blocks in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL 06VRS Programs and Resources in WinPCL 14-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

14 Programs and Resources in WinPCL

14.1 Programs, General Information

As is the case with function blocks, a program (PROGRAM, PR) is a
program organization unit which provides the following:

• 1...k inputs,

• 1...m outputs and

• internal variables,

• and can use external variables.

A program is the smallest unit in the programming system which can be
loaded and started.

pr_allgemein.bmp

xxx - Instance name (name of the PR assignment)
yyy - Type name of the PR
ei - Inputs of program 1...k
aj - Outputs of program 1...m

Fig. 14-1: Program, general interface

Delivery of values to the input variable and transmission of the values to
the output variable has to take place at resource level. This possibility is
not available at present!

Note: Since use of VAR_INPUT and VAR_OUTPUT is still disabled
at the moment, it is prohibited to enter these variables in the
declaration part.

14-2 Programs and Resources in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

dekl_pr.bmp

Fig. 14-2: Declaration part of a program

Contrary to the function block, it is permitted to use absolutely addressed
variables in the program.

Area Variable type Use

VAR %I Input variable, write protection

VAR %Q Output variable

VAR %M Flag variable

VAR RETAIN %R Buffered flag

Fig. 14-3: Permitted absolutely addressed variables

The user can decide how to obtain absolute addressed variables:

• At program level: absolute variables declared in VAR or VAR RETAIN:
these variables should only be used in this specific program.

• At resource level: absolute variables declared in VAR or VAR RETAIN,
which are globally enabled: these variables can be used in several
programs via VAR_EXTERNAL.

Note: Repeated declarations of variables with same addresses in
different programs should be avoided for a better program
transparency.

The IEC concept provides for a basic separation between the program
code of the program and the data memory required for saving the values
of the variables.

WinPCL 06VRS Programs and Resources in WinPCL 14-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The programming system allows the user to write programs himself and
to use them repeatedly. The user programs can import other user
functions or user function blocks and use them in the same way as the
standard and firmware functions or function blocks.

A structuring with SFC sequential function chart elements is possible,
external variables can be used.

Import Rules
A user program can use user, standard and firmware functions as well as
user, standard or firmware function blocks:

The used function is a
standard- or firmware
function

The used function is a
user function

The used function block is
a standard or firmware
function block

The used function block is
a user function block

Direct use without import
or declaration according
to the selected input
language.

Automatic import of the
function, at least its
declaration should exist.

Use according to the selected
input language.

No import necessary, as
contained in the standard
library.

A function block requires
space for the data which
belong to the assignment
(counter value, runtime, or
the like).

The required space has to
be reserved by the unit
wishing to use it.

Declaration of the
assignment of the FB in a
separate declaration editor.

Use according to the
selected input language.

Automatic import of the
function block, at least its
declaration should exist.

Declaration of the
assignment of the FB.

Use according to the
selected input language.

The nesting can be continued to any depth desired.

14-4 Programs and Resources in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

14.2 Resources

A resource is the uppermost level in the programming system.

Note: The name of a resource may not exceed a length of 32
characters.

If this length is exceeded, excess characters may be cut off
outside of Win PCL.

In the current version, the resource must fulfill the following tasks:

• Establishment of a connection to the IO interface of the control ("View /
IO editor").

• Providing the information, which is assigned to BTV file(s) of the
resource ("Extras / Miniature control panels" menu item).

• Providing the diagnosis module assignment data ("Extras / Diagnosis
Module Assignment").

• Declaration of variables in the VAR and VAR RETAIN areas. Absolute
addresses can be assigned to these variables .

Area Type Use

VAR %I Input variable, write protection

VAR %Q Output variable

VAR %M Flag variable

VAR RETAIN %R Buffered flag

Fig. 14-4: Permitted absolutely addressed variables

• Enabling of declared variables for global application is allowed; the
name of the variable is significant.

dekl_re.bmp

Fig. 14-5: Declaration part of a resource

WinPCL 06VRS Programs and Resources in WinPCL 14-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

• Moreover, the resource level is used to declare the tasks available for
the resource. The header changes as shown in the table below if the
cursor is positioned below the keyword "TASK" (Tasks, Time
Diagrams of the Execution):

Name ENABLE PRIORITY INTERVAL Comment

Slow TRUE 250 Cyclic task

Fast FastEnable 1 T#2ms Time-controlled task

Fig. 14-6: Possible tasks of a resource

Column 1:

Entry of the task name.

Column 2:

ENABLE, Boolean variable or TRUE for controlling the task enabling.

The variable has to be declared globally and can be controlled via VAR-
EXTERNAL by a program or a function block.

Note: The task can be stopped by a program instance or a function
block, that runs under its control, but cannot be restarted.

Column 3:

PRIORITY, the priority of a task can be between 0, highest priority, and
65535, lowest priority. A program under a task with a higher priority
interrupts a program under a task with a lower priority. Time-controlled or
edge-controlled tasks should always have a higher priority than cyclic
tasks so that they can be activated for execution.

Column 4:

INTERVAL, indicates the time frame for starting the task. If this column is
empty, the task is restarted immediately after completed execution,
otherwise after the defined interval.

Note: A total of eight tasks are enabled:

• cyclic tasks: at least one task

• time-controlled tasks: no more than seven tasks

• edge-controlled tasks: not enabled so far

14-6 Programs and Resources in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The last section in the declaration contains the declaration of program
instances and their assignment to already declared tasks. The header
changes as shown in the table below if the cursor is below the keyword
"PROGRAM":

Name WITH TYPE Comment

pr_instance_1 Slow PR_TYPE Background program

pr_fast_inst Fast PR_FAST_TYPE Fast cyclic program

Fig. 14-7: Assignment of program instances to tasks

Column 1:

Contains the instance name of the program.

Column 2:

Contains the name of the task under the management of which the
program has to run.

Column 3:

Contains the type name of the program.

14.3 Tasks, Time Diagrams of the Execution

A TASK is defined as an execution control element, which is able to
initiate the execution of a set of program instances on cyclic or time-
controlled basis or, in future, when the rising edge of a specific Boolean
variable occurs.

Tasks and their connections to program instances are represented
textually as a part of the resource (cf. Resources).

A task is implicitly permitted through the connected resource. In addition
to the definitions in EN 61131-3, it can be enabled by means of the
"ENABLE" input or its execution can be disabled.

task_indr.bmp

ENABLE: Enable input: FALSE, task disabled (standard)
TRUE, task enabled

SINGLE: Execution with rising edge, not connectable so far
INTERVAL: Cyclic execution if not connected (standard),

interval for time-controlled execution, if connected
PIORITY: Priority input

0 (highest priority)... 65535 (lowest priority)
Fig. 14-8: Task, shown as graphical diagram

WinPCL 06VRS Programs and Resources in WinPCL 14-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

If the task is enabled, control of the program instances has preemptive
scheduling according to the following rules:

• preemptive scheduling: A task scheduled for execution with higher
priority interrupts the execution of another task with lower priority, that
means the task with the lower priority is not executed until the
execution of the tasks with the higher priority is completed. A task
cannot interrupt tasks with same or higher priority.

Note: Dependent on the scheduled priorities it is possible, that a task
cannot start the execution at the moment it was scheduled for
execution.

• Time-controlled task (can be disabled via ENABLE=FALSE):

• Start takes place equidistantly; the interval time is specified through
the INTERVAL input.

• If a time-controlled task of low priority meets a higher-priority cyclic
or time-controlled task, it is placed in a waiting list until the higher-
priority task is completed. If the tasks meet several times,
processing is done only once.

• Cyclic task (can be disabled via ENABLE=FALSE):

• Each cyclic task is executed once in every cycle of the resource.

• The execution order is determined by the visible order in the
declaration in the resource file. Therefore, it is independent of the
priority.

• The priority is decisive with respect to interruptions by time-
controlled tasks.

• Each task organizes the updating of its I/O map.

• In addition, the I/O map of the resource, i.e. the global absolutely
addressed variables are updated by the task.

Note: The global variables for the remaining execution of an
interrupted program instance can be changed if the execution
of a task was interrupted !

Example of the execution of a task, Start with t=0:

Name ENABLE PRIORITY INTERVAL Comment

High FastEnable 2 T#6ms Time-controlled task, high priority

Medium TRUE 5 T#18ms Time-controlled task, low priority

Low TRUE 100 Cyclic task, high priority

Basic TRUE 250 Cyclic task, low priority

Fig. 14-9: Task declaration in the declaration part of the resource

Name WITH TYPE Comment

pr_B1 High PR_TYPE_4 Execution time: 2ms

pr_A1 Medium PR_TYPE_2 Execution time: 2ms

pr_A2 Medium PR_TYPE_3 Execution time: 2ms

pr_0 Low PR_TYPE_0 Execution time: 4ms

pr_1 Basic PR_TYPE_1 Execution time: 4ms

Fig. 14-10: Assignment of program instances to tasks

14-8 Programs and Resources in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Note: By the order selected for program instances (descending
priority of the tasks), cyclic tasks can be executed by
descending priority.

The Boolean variable "FastEnable" is assumed to be globally enabled
with the preassignment "FALSE". After t=2ms and t=24ms, it is
deactivated by the program pr_1 applied to "TRUE" and, after 15 ms and
43 ms, by the program pr_B1 (self-deactivation). FastEnable is contained
in these programs as VAR_EXTERNAL!

The order of executing the programs pr_A1 and pr_A2, same task,
complies with the visible order of the entry in section Resources.

Notation "X µ Y" in the following time schedule indicates that the POU "X"
is scheduled with priority "Y" and is being executed.

t/ ms Executing Waiting

0 pr_0 µ100 (Cycl), pr_1 µ250 (0ms)

2 pr_0 µ100 (FastEnable= TRUE), pr_1 µ250 (0ms)

4 pr_1 µ250

8 pr_0 µ100 (Cycl), pr_1 µ250 (0ms)

12 pr_1 µ250

14 pr_B1 µ2 pr_1 µ250 (2ms)

15 pr_B1 µ2 (FastEnable= FALSE), pr_1 µ250 (2ms)

16 pr_1 µ250

18 pr_A1 µ5 (Cycl),pr_A2 µ5, pr_0 µ100 (0ms), pr_1 µ250 (0ms)

20 pr_A2 µ5 pr_0 µ100 (0ms), pr_1 µ250 (0ms)

22 pr_0 µ100 pr_1 µ250 (0ms)

24 pr_0 µ100 (FastEnable= TRUE), pr_1 µ250 (0ms)

26 pr_1 µ250

30 pr_0 µ100 (Cycl), pr_1 µ250 (0ms)

34 pr_1 µ250

36 pr_b1 µ2 pr_A1 µ5, pr_A2 µ5, pr_1 µ250 (2ms)

38 pr_A1 µ5 pr_A2 µ5, pr_1 µ250 (2ms)

40 pr_A2 µ5 pr_1 µ250 (value: 2ms)

42 pr_b1 µ2 pr_1 µ250 (value: 2ms)

43 pr_b1 µ2 (FastEnable= FALSE), pr_1 µ250 (value: 2ms)

44 pr_1 µ250

46 pr_0 µ100 (Cycl), pr_1 µ250 (0ms)

50 pr_1 µ250

Fig. 14-11: Time schedule

WinPCL 06VRS Programs and Resources in WinPCL 14-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

task_timetable.bmp

X µY: Instance X is scheduled or executed with priority Y
E/A global: Updating of the global variables
RE-Cycle: Flags indicate the cycle start of the resource

Fig. 14-12: Time table for program execution

A FALSE / TRUE status change of the Boolean variable FastEnable (task
enable high) is identified at the beginning of the next resource cycle. The
first activation takes place one interval time (here 6 ms) later.

• Edge: t=2ms, cycle start: t=8ms, activation t=14ms

• Edge: t=24ms, cycle start: t=30ms, activation t=36ms

The cycle of the resource is completed always after execution of all cyclic
programs (pr_0/priority 100, pr_1 /priority 250 in the example), that means
at the instant: 8 msec, 18 msec, 30 msec, 46 msec, etc.

14.4 Management of Global and Local Data

User data are managed in the PLC in data segments. Thereby, it is
distinguished between compiler-assigned and absolute data as well as
between local and global data.

Local Data
The validity area of the variables is restricted to the respective program
organization unit (POU).

Compiler-assigned local data
Declared variables without absolute reference are compiler-assigned
data, that are specified free from conflicts by the compiler. Only volatile
and non-volatile (remanent) data are distinguished:

VAR

fvar : BYTE; (* compiler-assigned volatile data *)

END_VAR

VAR RETAIN

rvar : BYTE; (* compiler-assigned remanent data *)

END_VAR

14-10 Programs and Resources in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Absolute data
Declared variables with absolute reference are absolute data. They are
linked with the aid of the absolute reference to a concrete memory
address by the user. Thereby, no conflict test is executed. Either several
symbolic variables of the same data type can be linked to one reference
or memory areas can be overlayed by variables with different data types.
Volatile and non-volatile absolute (remanent) data are distinguished.

Note: Compiler-assigned and absolute data never coincide.

Absolute data are permitted in resources and programs.

VAR

fabs AT %MB4 : BYTE; (* absolute volatile data *)

END_VAR

VAR RETAIN

rabs AT %RB6 : BYTE; (* absolute remanent data *)

END_VAR

Global Data
Basically, global variables are assigned to the resource. The validity area
of the global variables is the resource and each program organization unit
(POU) used by this resource and in which they are declared as external
variables. Compiler-assigned and absolute global variables are
distinguished.

Compiler-assigned global data
Compiler-assigned global variables are declared in the declaration editor
of the resource in the area VAR - END_VAR or VAR RETAIN -
END_VAR. So, they are initially local variables of the resource. To assign
to this variables the property global, they have to be entered in the area
VAR GLOBAL - END_VAR of resource’s declaration editor (To copy the
block is possible.)

VAR

fglvar : BYTE; (* compiler-assigned volatile data *)

END_VAR

VAR RETAIN

rglvar : BYTE; (* compiler-assigned remanent data *)

END_VAR

VAR GLOBAL

fglvar : BYTE; (* global volatile data *)

rglvar : BYTE; (* global remanent data *)

END_VAR

WinPCL 06VRS Programs and Resources in WinPCL 14-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Absolute global data
If you extend the declaration of a local variable by an absolute reference,
you obtain an absolute local variable. With the specification of the
reference the variable is linked to a concrete memory address by the
user. To assign this variables the property global, they have to be entered
in the area VAR GLOBAL - END_VAR of the resource’s declaration
editor.

VAR

fglabs AT %MB4 : BYTE; (* absolute volatile flags *)

END_VAR

VAR RETAIN

rglabs AT %RB6 : BYTE; (* absolute remanent flags *)

END_VAR

VAR GLOBAL

fglvar AT %MB4 : BYTE; (* global absolute variables *)

rglvar AT %RB6 : BYTE; (* global absolute remanent variables *)

END_VAR

Note: Compiler-assigned global and absolute global data never
coincide.

Absolute Data
Basically, absolute data are, like the global data, assigned to the
resource. They can be declared and used in the resource and in
programs. Thereby, each declaration on an absolute reference is a
reference on the same memory address, i.e. a local absolute variable with
the reference %MB4 coincides with a global variable with reference
%MB4. Thus, absolute variables can be used in the resource and the
programs like global variables without being explicitly declared under VAR
GLOBAL and VAR EXTERNAL.

RESOURCE R1

VAR

glabs AT %MB4 : BYTE; (* absolute volatile flags *)

END_VAR

VAR GLOBAL

glabs AT %MB4 : BYTE; (* global absolute volatile flags *)

END_VAR

PROGRAM P1

VAR

labs AT %MB4 : BYTE; (* local absolute volatile flags *)

END_VAR

VAR EXTERNAL

glabs : BYTE; (* reference on global absolute volatile flags *)

END_VAR

In program P1 the variables "labs" and "glabs" are two references on the
same memory address.

14-12 Programs and Resources in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

14.5 Start of the PLC

User data are initialized in the PLC at specified points of time. These
points of time are designated as cold start and warm start. If a cold start is
executed, it always contains all activities of the warm start.

Basically, all variables are initialized with the standard initial value. The
standard initial value is zero for all data types.

Cold start
After downloading the files of a current resource in the PLC a cold start is
executed under the following conditions:

1. A change of the current resource has occurred. As criteria solely the
name of the current resource is used and not the name of the variant
etc. So, to retrieve an archive with the same current resource name is
no change of the current resource.

2. The PLC program was invalid before downloading (e.g. interruption of
the download in the PLC renders the program invalid or if an
transmission error occurs.)

3. The data in the safety directory "Downloaded Files" do not fit to the
data in the PLC.

During a cold start all volatile and remanent data in the PLC are first
initialized with the standard initial value and then with the single specified
initial values.

Warm start
A warm start is executed:

1. after every download,

2. after switching on the PLC,

3. after each soft or hard reset of the PLC.

During a warm start all volatile data in the PLC are first initialized in the
PLC with the standard initial value and then with the single specified initial
values.

Additionally, all remanent data are initialized, that are used for the first
time after the last download or if its name, data type or initial value has
changed.

WinPCL 06VRS Programs and Resources in WinPCL 14-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

14.6 Initialization of the Data

Initialization of global data
Global data are assigned to the resource. They are treated like local data
of the resource and initialized with the other data of the resource
according to the rules for cold and warm start.

Initialization of absolute data
Absolute data are assigned to the resource. They are treated like local
data of the resource and initialized with the other data of the resource
according to the rules for cold and warm start.

Additionally, absolute data can be declared in a program and can be
provided with single specified initial values. They are initialized during the
initialization of the program with the single specified initial values (not
once more with the standard initial value). Thereby, multiple assigned
single initial values can superpose on the same absolute reference. The
order of this initialization depends on the order of the activation of the
program instances from the tasks.

Remanent absolute data are not initialized after deleting a declaration, as
it could be also used otherwise.

14-14 Programs and Resources in WinPCL WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL 06VRS Error Management 15-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

15 Error Management

15.1 S#ErrorFlg

Fundamentals of the Error Management Concept
The execution of programs on the PLC can result in the calculation of
variable values, for which the downstream functions and function blocks
are not defined.

Example:

The calculation of the divisor of an integer division results in the value
zero, a value which normally cannot be accepted.

Name AT TYPE := Comment

VAR

real1 REAL 3.0

real2 REAL 0.0

real3 REAL 2.0

END_VAR

Fig. 15-1: Declaration of the variables

Label Operation Operand Comment

LD real1

DIV real2

ST real3

Fig. 15-2: Implementation

The result of this division is not correct. For that reason, the calculation is
not carried out, so that the initial value of real3 (3.0) remains the same.
However, the error variables are set:

S#ErrorFlg= TRUE, S#ErrorTyp= -10038, S#ErrorNr= 8

Goal

To allow the user to localize the above mentioned errors and to react
accordingly.

To achieve this, three error variables were automatically added in each
function, each function block and in each program, in addition to the
known function contents.

An execution of the user program without any interruptions is ensured in
any case.

The program continues as expected when the error message is ignored.

S#ErrorFlg (BOOL)
Standard: FALSE

S#ErrorNr(USINT)
Standard: 0

S#ErrorTyp (INT)
Standard: 0

S#ErrorFlg= 0, there was
no error during the
present execution
(Standard),S#ErrorFlg=
1, there was at least one
error which is specified
in more detail

Detailed information on
the error can be taken
from a number > 0.

The PLC manufacturer
reserved negative error
types for standard and
firmware functions and
function blocks. Positive
error types are available
to the user for his own
work.

Fig. 15-3: S#ErrorFlg, S#ErrorNr and S#ErrorTyp

15-2 Error Management WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Occurred errors are handed upward to the respective unit that initialized
the call up to the program.

The three variables are also declared in self-written functions, function
blocks and programs and are available for access.

15.2 Error Management Sequence

After the first reload of a program, plus user FB / FN, all error variables of
the individual program organization unit are set to their standard value 0
when the program is started.

The program should be structured as follows:

error tree_00.bmp

PR: Program
FB: User function block
fb: Standard function block
FN: User function
fn: Standard function

Fig. 15-4: Structure of the program "Test"

The following sequence is passed during the execution:

Name Section S#ErrorFlg S#ErrorNr S#ErrorTyp

PR TEST (1) 0 0 0

FB FB_X/x1 (1) 0 0 0

FN FN_A (1) 0 0 0

fn FN_B 0 0 0

FN FN_A (2) 0 0 0

FB FB_X/x1 (2) 0 0 0

fn FN_B 0 0 0

FB FB_X/x1 (3) 0 0 0

PR TEST (2) 0 0 0

FN FN_A (1) 0 0 0

fn FN_B 0 0 0

FN FN_A (2) 0 0 0

PR TEST (3) 0 0 0

Fig. 15-5: Correct run of the program

If there are no errors PR TEST (cycle 3) is closed with assignment
S#ErrorFlg= 0, S#ErrorNr= 0, S#ErrorTyp= 0.

Different variables changed during the calculation. The next PLC cycle
follows.

The changed variables cause an error in the standard function fn FN_B.
The function fn FN_B calculates the values and additionally changes the
error variables.

The error message is then forwarded to the respective initiating file, on
the left in the import tree, until it reaches the program itself.

WinPCL 06VRS Error Management 15-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

The error message is not forwarded to the right in the import tree.

If you go on further to the right in the import tree, the three variables for
the new POU are reset to zero.

There should not be any user reaction yet.

Name Section S#ErrorFlg S#ErrorNr S#ErrorTyp Comment

PR TEST (1) 0 0 0 Without errors

FB FB_X/x1 (1) 0 0 0 Without errors

FN FN_A (1) 0 0 0 Without errors

fn FN_B 1 23 -1 Place of error

FN FN_A (2) 1 23 -1 Error taken to the left

FB FB_X/x1 (2) 1 23 -1 Error taken to the left

fn FN_B 0 0 0 To the right without error

FB FB_X/x1 (3) 1 23 -1 Error remains stored

PR TEST (2) 1 23 -1 Error taken to the left

FN FN_A (1) 0 0 0 To the right without error

fn FN_B 0 0 0 To the right without error

FN FN_A (2) 0 0 0 Back without error

PR TEST (3) 1 23 -1 Error remains stored

Fig. 15-6: Error in fn FN_B without any reaction

The active error is taken over in the program to the next PLC cycle.

In the next cycle you go to the right with reset error variables.

• Elimination of the error causes results in the table below, "Error in fn
FN_B does not exist any longer, no user reaction".

• If the error still exists, the table "Error in fn FN_B without reaction of
the user" comes up again.

Name Section S#ErrorFl
g

S#ErrorNr S#ErrorTyp Comment

PR TEST (1) 1 23 -1 Error remains stored

FB FB_X/x1 (1) 0 0 0 To the right without error

FN FN_A (1) 0 0 0 To the right without error

fn FN_B 0 0 0 Without errors again

FN FN_A (2) 0 0 0 Back without error

FB FB_X/x1 (2) 0 0 0 Back without error

fn FN_B 0 0 0 To the right without error

FB FB_X/x1 (3) 0 0 0 Back without error

PR TEST (2) 1 23 -1 Error remains stored

FN FN_A (1) 0 0 0 To the right without error

fn FN_B 0 0 0 To the right without error

FN FN_A (2) 0 0 0 Back without error

PR TEST (3) 1 23 -1 Error remains stored

Fig. 15-7: Error in fn FN_B does not exist any longer, no user reaction

The error at program level has to be cleared actively by the user.

The user can also interfere, in the user function FN FN_A, (Cycle 2) at the
earliest or later in another program organization unit.

15-4 Error Management WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

He first sees that the S#ErrorFlg error bit is set and can then specifically
evaluate S#ErrorNr/S#ErrorTyp accordingly.

After evaluation, it is sufficient to set S#ErrorFlg to 0, as by this way
S#ErrorNr / S#ErrorTyp become invalid. S#ErrorNr, S#ErrorTyp do not
have to be changed.

Name Section S#ErrorFlg S#ErrorNr S#ErrorTyp Comment

PR TEST (1) 0 0 0

FB FB_X/x1 (1) 0 0 0

FN FN_A (1) 0 0 0

fn FN_B 1 23 -1 Place of error

FN FN_A (2a) 1 23 -1 Error detected and eliminated

FN FN_A (2b) 0 23 -1 S#ErrorFlg reset

FB FB_X/x1 (2) 0 0 0 Error eliminated, no copy

fn FN_B 0 0 0

FB FB_X/x1 (3) 0 0 0

PR TEST (2) 1 23 -1

FN FN_A (1) 0 0 0

fn FN_B 0 0 0

FN FN_A (2) 0 0 0

PR TEST (3) 1 23 -1

Fig. 15-8: Error evaluation in FN FN_A, (section 2a), reset S#ErrorFlg

15.3 Error Management in Case of Multiple Errors

Theoretically, it is possible to think of a second error occurring in a
different program section and having an assignment which is different
from or equal to S#ErrorNr and S#ErrorTyp, before the first error has
been detected and eliminated. This error is also moved to the left in the
import tree.

The following applies:

S#ErrorNr and S#ErrorTyp are not overwritten before S#ErrorFlg is reset.

The information on the second error thus is in wait position.

15.4 Error Management in User Files

As the three variables are automatically declared for newly generated
user files and the error mechanism for standard and firmware files is
known, the user can use this mechanism also for his concerns in own
user files.

Note: To avoid mistakes, only error types (S#ErrorTyp) with positive
number may be used.

WinPCL 06VRS Error Management 15-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

15.5 S#ErrorTyp

Übersicht Overview of possible errors and their initiators

If TRUE is applied to S#ErrorFlg, an error occurred during the execution
of an operation, a function or a function block.

S#ErrorTyp indicates the initiator:

• -1 ... -350 Errors in Functions and Function Blocks

• starting with -10000. Errors in Operations and IL Instructions

• starting with -11000. Sequential Function Chart Errors (SFC)

The error itself is characterized in more detail by the error number
S#ErrorNr.

15.6 Errors in Functions and Function Blocks

Explanation:

S#ErrorTyp, indicates the fb/fn that initiated the error.

fn – firmware function

*fn – standard function

fb – firmware function block

*fb – standard function block

S#ErrorTyp Type Name Comment

-1 fn M_FKT Polling of M help functions with indication of the help function number

-2 fn M_FKT_Q Acknowledgement of M help functions with indication of the help
function number

-3 fn S_FKT Polling of S help functions with indication of the help function number

-4 fn S_FKT_Q Acknowledgement of S help functions with indication of the help function
number

-5 fn T_FKT Polling of T help functions with indication of the help function number

-6 fn T_FKT_Q Acknowledgement of T help functions with indication of the help function
number

-7 fn Q_FKT Polling of Q help functions with indication of the help function number

-8 fn Q_FKT_Q Acknowledgement of Q help functions with indication of the help function
number

-9 fn EVENT Polling of events

-10 fn EV_ST Value transmission to events

-11 fn EV_SET Conditional setting of events

-12 fn EV_RES Conditional resetting of events

-13 fn MSG_WR Diagnosis output, message number directly defined

-14 fn MSG_RD Read-in of CNC message numbers

-15 fn MRF Request for Magazine reference run

-16 fn MRF_Q Acknowledgement of Magazine reference run

-17 fn MMV Request for Magazine on new position

-18 fn MMV_Q Acknowledgement of Magazine on new position

-19 fn TCH Request for General tool change

15-6 Error Management WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

S#ErrorTyp Type Name Comment

-20 fn TCH_Q Acknowledgement of General tool change

-21 fn TMS Request for Tool change magazine / spindle

-22 fn TMS_Q Acknowledgement of Tool change magazine / spindle

-23 fn TSM Request for Tool change spindle / magazine

-24 fn TSM_Q Acknowledgement of Tool change spindle / magazine

-25 fn XMS Initialization of Tool transfer magazine / spindle

-26 fn XMS_PA Tool transfer magazine / spindle allowed

-27 fn XMS_NA Tool transfer magazine / spindle not allowed

-28 fn XMS_Q Acknowledgement of Tool transfer magazine / spindle

-29 fn XSM Initialization of Tool transfer spindle / magazine

-30 fn XSM_PA Tool transfer spindle / magazine allowed

-31 fn XSM_NA Tool transfer spindle / magazine not allowed

-32 fn XSM_Q Acknowledgement of Tool transfer spindle / magazine

-33 fn XMG Initialization of Tool transfer magazine / gripper

-34 fn XMG_PA Tool transfer magazine / gripper allowed

-35 fn XMG_NA Tool transfer magazine / gripper not allowed

-36 fn XMG_Q Acknowledgement of Tool transfer magazine / gripper

-37 fn XSG Initialization of Tool transfer spindle / gripper

-38 fn XSG_PA Tool transfer spindle / gripper allowed

-39 fn XSG_NA Tool transfer spindle / gripper not allowed

-40 fn XSG_Q Acknowledgement of Tool transfer spindle / gripper

-41 fn XGS Initialization of Tool transfer gripper / spindle

-42 fn XGS_PA Tool transfer gripper / spindle allowed

-43 fn XGS_NA Tool transfer gripper / spindle not allowed

-44 fn XGS_Q Acknowledgement of Tool transfer gripper / spindle

-45 fn XGM Initialization of Tool transfer gripper / magazine

-46 fn XGM_PA Tool transfer gripper / magazine allowed

-47 fn XGM_NA Tool transfer gripper / magazine not allowed

-48 fn XGM_Q Acknowledgement of Tool transfer gripper / magazine

-49 *fn GRAY_TO_BYTE Type conversion of graycode -> BYTE

-50 *fn BYTE_TO_GRAY Type conversion of BYTE -> graycode

-51 *fn BYTE_BCD_TO_INT Type conversion of BCD code, byte, 2 digits-> INTEGER

-52 *fn WORD_BCD_TO_INT Type conversion of BCD code, word, 4 digits -> INTEGER

-53 *fn BYTE_TO_INT Type conversion of BYTE -> INTEGER

-54 *fn WORD_TO_INT Type conversion of WORD -> INTEGER

-55 *fn INT_TO_BYTE Type conversion of integer number -> BYTE

-56 *fn INT_TO_WORD Type conversion of integer number -> word

-57 *fn INT_TO_BCD_WORD Type conversion of integer number -> 4 digit BCD-coded word

-58 *fn USINT_TO_INT Type conversion of UNSIGNED SHORT INTEGER -> INTEGER

-59 *fn INT_TO_USINT Type conversion of INTEGER -> UNSIGNED SHORT INTEGER

-60 *fn USINT_TO_BYTE Type conversion of UNSIGNED SHORT INTEGER -> BYTE

-61 *fn BYTE_TO_USINT Type conversion of BYTE -> UNSIGNED SHORT INTEGER

WinPCL 06VRS Error Management 15-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

S#ErrorTyp Type Name Comment

-62 *fn CONCAT_BYTE Attachment of low byte to high byte

-63 *fn CONCAT_WORD Attachment of low word to high word

-64 *fn HIGH_BYTE Taking the high byte from the word

-65 *fn LOW_BYTE Taking the low byte from the word

-66 *fn HIGH_WORD Taking the high word from DWORD

-67 *fn LOW_WORD Taking the low word from DWORD

-68 *fn SIGN_INT Sign of an integer number

-69 *fn ABS_INT Absolute value of an integer number

-70 *fn SHL_BYTE Move BYTE by n digits to the left

-71 *fn SHL_WORD Move WORD by n digits to the left

-72 *fn SHR_BYTE Move BYTE by n digits to the right

-73 *fn SHR_WORD Move WORD by n digits to the right

-74 *fn ROL_BYTE Rotate BYTE by n digits to the left

-75 *fn ROL_WORD Rotate WORD by n digits to the left

-76 *fn ROR_BYTE Rotate BYTE by n digits to the right

-77 *fn ROR_WORD Rotate WORD by n digits to the right

-78 *fb SR FLIP_FLOP, dominating setting

-79 *fb RS FLIP_FLOP, dominating resetting

-80 *fb R_TRIG Identification of a rising edge

-81 *fb F_TRIG Identification of a falling edge

-82 *fb CTUD_USINT_INDR Up-down counter, value range UNSIGNED SHORT INTEGER

-83 *fb CTUD_UINT_INDR Up-down counter, value range UNSIGNED INTEGER

-84 *fb CTUD_INT_INDR Up-down counter, value range INTEGER

-85 *fb TP Timer pulse

-86 *fb TON On-delay timer function block

-87 *fb TOFF Off-delay timer function block

-88 fb SC_WRITE Function no longer supported

-89 fb SC_READ Function no longer supported

-90 fb VAR_WR Function no longer supported

-91 fb VAR_RD Function no longer supported

-92 fb SEL_MEM Selection of the NC program memory

-93 fb ACT_MEM Polling of the active NC program memory

-94 fn XMS_CA Cancel tool transfer from magazine to spindle

-95 fn XSM_CA Cancel tool transfer from spindle to magazine

-96 fn XMG_CA Cancel tool transfer from magazine to gripper

-97 fn XSG_CA Cancel tool transfer from spindle to gripper

-98 fn XGS_CA Cancel tool transfer from gripper to spindle

-99 fn XGM_CA Cancel tool transfer from gripper to magazine

-100 fn MHP Function no longer supported

-101 fn MHP_Q Function no longer supported

-102 fn GRP Function no longer supported

-103 fn GRP_Q Function no longer supported

15-8 Error Management WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

S#ErrorTyp Type Name Comment

-104 fn REL Function no longer supported

-105 fn REL_Q Function no longer supported

-106 fb OPEN_COM Initialization of a general data channel

-107 fb CLOS_COM Close data transmission of a general data channel

-108 fb OPEN_SOT Function no longer supported

-109 fb CLOS_SOT Function no longer supported

-110 fb WR_BYTE Write a byte to the transmit buffer

-111 fb RD_BYTE Read a byte to general transmission channel

-112 fb CTRL_COM Request status of a serial interface

-113 fn MAG_ACT Polling of selected magazine axis for combined spindle / turret axis

-114 fn MAG_Q Acknowledgement of selected magazine axis for combined spindle /
revolving axis

-115 fn SPDL_ACT Polling of selected spindle for combined spindle / turret axis

-116 fn SPDL_Q Acknowledgement of selected spindle for combined spindle / turret axis

-117 fn M_ALL Polling of M help functions without indication of the help function number

-118 fn M_ALL_Q Acknowledgement of M help functions without indication of the help
function number

-119 fn S_ALL Polling of S help functions without indication of the help function number

-120 fn S_ALL_Q Acknowledgement of S help functions without indication of the help
function number

-121 fn T_ALL Polling of T help functions without indication of the help function number

-122 fn T_ALL_Q Acknowledgement of T help functions without indication of the help
function number

-123 fn Q_ALL Polling of Q help functions without indication of the help function number

-124 fn Q_ALL_Q Acknowledgement of Q help functions without indication of the help
function number

-125 fb USERBOF Function no longer supported

-126 fn M_NR Reading of the M help function number

-127 fn S_NR Reading of the S help function number

-128 fn Q_NR Reading of the Q help function number

-129 fn XFER_CHK Deactivate check of the tool transfer

-130 fn MSG_WR_N Message output with additional information as number

-131 fn MSG_WR_A Message output with additional information as axis identification

-132 fb AXD_WR Writing of demand data

-133 fb AXD_RD Reading of demand data

-134 fn SPMOD Request for preselection of spindle mode for rotary-axis-capable main
spindle

-135 fn SPMOD_Q Acknowledgement of preselection of spindle mode for rotary-axis-
capable main spindle

-136 fn ROTMOD Request for preselection of rotary axis mode for rotary-axis-capable
main spindle

-137 fn ROTMOD_Q Acknowledgement of preselection of rotary axis mode for rotary-axis-
capable main spindle

-138 *fn CHAR_TO_BYTE Type conversion of CHAR -> BYTE

-139 *fn BYTE_TO_CHAR Type conversion of BYTE -> CHAR

WinPCL 06VRS Error Management 15-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

S#ErrorTyp Type Name Comment

-140 *fn INT_TO_STRING Type conversion of INTEGER -> STRING

-141 *fn STRING_TO_INT Type conversion of STRING -> INTEGER

-142 *fn LEN Length of a STRING

-143 *fn LEFT Leftmost L_ character of a STRING

-144 *fn RIGHT Rightmost L_ character of a STRING

-145 *fn MID L_ character of a STRING, from the pth character

-146 *fn CONCAT_S Combination of two STRINGS

-147 *fn INSERT Insert of a STRING after the Lth character

-148 *fn DELETE Delete L_ character of a STRING from pth character

-149 *fn REPLACE Replace L_ character of a STRING from pth character

-150 *fn FIND Find character string IN2_ in IN1_

-151 fb GUI_SK Function no longer supported

-152 *fn DINT_TO_DWORD Type conversion of DOUBLE INTEGER -> DOUBLE WORD

-153 *fn DWORD_TO_DINT Type conversion of DOUBLE WORD -> DOUBLE INTEGER

-154 *fn DINT_TO_INT Type conversion of DOUBLE INTEGER -> INTEGER

-155 *fn INT_TO_DINT Type conversion of INTEGER -> DOUBLE INTEGER

-156 *fn DINT_TO_TIME Type conversion of DOUBLE INTEGER -> Time

-157 *fn TIME_TO_DINT Type conversion of Time -> DOUBLE INTEGER

-158 fn HNDWHEEL Transmission of handwheel position

-159 *fn SHL_DWORD Move DOUBLE WORD by n digits to the left

-160 *fn SHR_DWORD Move DOUBLE WORD by n digits to the right

-161 *fn ROL_DWORD Rotate DOUBLE WORD by n digits to the left

-162 *fn ROR_DWORD Rotate DOUBLE WORD by n digits to the right

-163 fb RLVAR_WR Function no longer supported

-164 fb RLVAR_RD Function no longer supported

-165 *fn DINT_TO_REAL Type conversion of DOUBLE INTEGER -> REAL

-166 *fn REAL_TO_DINT Type conversion of REAL -> DOUBLE INTEGER

-167 *fn STRING_TO_REAL Type conversion of STRING -> REAL

-168 *fn REAL_TO_STRING Type conversion of REAL -> STRING

-169 fb TLD_WR Writing to tool data

-170 fb TLD_RD Reading of tool data

-171 *fn DINT_TO_UDINT Type conversion of DOUBLE INTEGER -> UNSIGNED DOUBLE
INTEGER

-172 *fn UDINT_TO_DINT Type conversion of UNSIGNED DOUBLE INTEGER -> DOUBLE
INTEGER

-173 fb DATE_RD Reading of the date

-174 fb TOD_RD Reading of the time

-175 fb OTD_WR Writing to zero point data

-176 fb OTD_RD Reading of zero point data

-177 fb MTD_WR Writing to machine data

-178 fb MTD_RD Reading of machine data

-179 fb NETIO_RD Reading of realtime bits

-180 fn T_NR Reading of T help function number for process (PROC)

15-10 Error Management WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

S#ErrorTyp Type Name Comment

-181 fn E_FKT Reading of E help functions (EDGE) for process (PROC)

-182 fn E_FKT_Q Acknowledgement of E help functions (EDGE) for process (PROC)

-183 fn E_ALL Polling of any E help function for process (PROC)

-184 fn E_ALL_Q Acknowledgement of any E help function for process (PROC)

-185 fn E_NR Reading of E help function number for process (PROC)

-186 fb TLBD_WR Writing of basic tool data

-187 fb TLED_WR Writing of tool tip data

-188 fb TL_ENABLE Enable of tool data

-189 fb TLBD_RD Reading of basic tool data

-190 fb TLED_RD Reading of tool tip data

-191 fb TL_RESET Reset tool

-192 fb TL_DELETE Delete tool

-193 fb TL_MOVE Move tool

-195 *fb BOOL_BYTE Conversion of 8-bit -> byte

-196 *fb BYTE_BOOL Conversion of Byte -> 8-bit

-197 *fb BOOL_WORD Conversion of 16-bit -> word

-198 *fb WORD_BOOL Conversion of word -> 16-bit

-199 *fb BOOL_DW Conversion of 32-bit -> doubleword

-200 *fb DW_BOOL Conversion of doubleword -> 32-bit

-201 fb FLASH Pulse generator

-202 fb TOGGLE Toggling of a bit

-203 fb RD_STR Reading a STRING via the serial interface

-204 fb WR_STR Writing a STRING to the transmitter buffer

-205 fn TIME_DAY Conversion of TIME_ to the numerical value of day

-206 fn TIME_HOUR Conversion of TIME_ to the numerical value of hour

-207 fn TIME_MIN Conversion of TIME_ to the numerical value of minute

-208 fn TIME_SEC Conversion of TIME_ to the numerical value of second

-209 fn TIME_MS Conversion of TIME_ to the numerical value of milliseconds

-210 fn MAKETIME Conversion of the FN inputs day ’D’, hour ‘H’, minute ‘M’, second ‘S’,
and millisecond ‘MS’ to a time value

-211 fn COL_CTRL Switch on and off the one-dimensional approach monitoring

-212 fn COL_CTRL_S Request the status of the approach monitoring

-213 fb TLG_RD Read the group status information of the PLC user program's tool group

-214 fb TLG_WR Modification of the group status data by the PLC user

-215 fb IB_GROFF Function no longer supported

-216 fb MODBUS Function no longer supported

-217 fn BT_START Starts BT Bus

-218 fn BT_STOP Stops BT Bus

-219 fn BT_STATUS Status information on BT Bus process data exchange

-220

-221 fb DCD_RD Reading of D-corrections

-222 fb DCD_WR Writing of D-corrections

WinPCL 06VRS Error Management 15-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

S#ErrorTyp Type Name Comment

-223 fb NCVAR_RD Reading of NC variables

-224 fb NCVAR_WR Writing of NC variables

-225 fb GUI_SK16 Enable of (16) machine function keys GUI / menu9

-226 fn REV_SYNC Synchronous swiveling of the revolver in the NC set

-227 fb CLR_COM Clearing the receiver and transmitter buffers of a serial interface

-228 *fn SINT_TO_INT Conversion of SINT number into INT number

-229 *fn INT_TO_SINT Conversion of INT number into SINT number

-230 *fn SINT_TO_BYTE Conversion of SINT number to BYTE

-231 *fn BYTE_TO_SINT Conversion of BYTE to SINT number

-232 *fn UINT_TO_INT Type conversion of UNSIGNED INTEGER -> INTEGER

-233 *fn INT_TO_UINT Type conversion of INTEGER UNSIGNED -> INTEGER

-234 *fn UINT_TO_WORD Type conversion of UNSIGNED INTEGER -> WORD

-235 *fn WORD_TO_UINT Type conversion of WORD -> UNSIGNED INTEGER

-236 *fn REAL_TO_DWORD Type conversion of REAL -> DWORD

-237 *fn DWORD_TO_REAL Type conversion of DWORD -> REAL

-238 Fb BTXX Communication between PLC and HMI operating panels of BTV04,
BTV05 and BTC06 via a serial interface

-239 fb DPM_SLDIAG Single diagnosis of a PROFIBUS slave

-240 fn VLT_MEAS In connection with the analog module RMC12.2-2E-1A, it is possible to
measure voltages of up to ±10 V.

-241 fn SAVE_IO Safety function for projected axis

-242 fb DPM_STATE Status information on the PROFIBUS master:

-243 fn DPM_STOP Stopping the bus communication

-244 fn DPM_START Starting the bus communication

-245 fn DPM_EXCHG Status information on PROFIBUS process data exchange

-246 fn AMP_MEAS In connection with the analog module RMC12.2-2E-1A, it is possible to
measure currents of up to ±20 mA.

-247 fn RES_MEAS In connection with the analog module RMC12.2-2E-1A, it is possible to
measure resistances of up to 2000 Ω.

-248 fn TMP1MEAS In connection with the analog module RMC12.2-2E-1A, it is possible to
measure temperature ranging from -100 °C to +850 °C.

-249 fn AN_OUT In connection with the analog module RMC12.2-2E-1A, it is possible to
provide voltages of up to ±10 V and currents of up to +20 mA at the
analog output.

-250 fn DIAG_WORD Diagnosis functions (hidden to the user)

-251 fn DIAG_UINT Diagnosis functions (hidden to the user)

-252 fn DIAG_INT Diagnosis functions (hidden to the user)

-253

-254 Fn BTXX_2 Communication block for manual device BTC06 with 64 IO.

-255 fn RT_DATA Function block for quick access to NC signal values

-256 fn DIAG_BYTE Diagnosis functions (hidden to the user)

-257 fn DIAG_CHAR Diagnosis functions (hidden to the user)

-258 fn DIAG_SINT Diagnosis functions (hidden to the user)

-259 fn DIAG_USINT Diagnosis functions (hidden to the user)

-260 fn DIAG_BOOL32 Diagnosis functions (hidden to the user)

15-12 Error Management WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

S#ErrorTyp Type Name Comment

-261 fn DIAG_DWORD Diagnosis functions (hidden to the user)

-262 fn DIAG_BOOL0 Diagnosis functions (hidden to the user)

-263 fn DIAG_BOOL4 Diagnosis functions (hidden to the user)

-264 fn DIAG_BOOL8 Diagnosis functions (hidden to the user)

-265 fn DIAG_BOOL16 Diagnosis functions (hidden to the user)

-266 fn DIAG_DINT Diagnosis functions (hidden to the user)

-267 fn DIAG_UDINT Diagnosis functions (hidden to the user)

-268 fn DIAG_REAL Diagnosis functions (hidden to the user)

-269 fn DIAG_TIME Diagnosis functions (hidden to the user)

-270 fn SQRT_REAL Root

-271 fn LN_REAL Natural logarithm LN

-272 fn LOG_REAL Common logarithm LOG

-273 fn EXP_REAL Exponential function

-274 fn SIN_REAL Sinusoidal function

-275 fn COS_REAL Cosinoidal function

-276 fn TAN_REAL Tangential function

-277 fn ASIN_REAL Arc sinusoidal function

-278 fn ACOS_REAL Arc cosinoidal function

-279 fn ATAN_REAL Arc tangential function

-280 fb MC_INITIALIZATION Initialization of the DP-RAM interface MC-PLC

-281 fb MC_CHANGE_
PHASE

Writing of the SERCOS communication phase (phase switchover)

-282 fb MC_RD_PARA
METER

Reading of an MC single parameter

-283 fb MC_WR_PARA
METER

Writing of an MC single parameter

-284 fb MC_WR_LISTDATA Writing of an MC list parameter

-285 fn MC_DIAGNOSIS Reading of an MC-SIS diagnosis

-286 fb MC_RD_LISTDATA Reading of an MC list parameter

-287 fb MC_RD_DATASTA
TUS

Reading of data state of an MC parameter

-288 fb MC_ABORT_TRANS
MISSION

Abortion of an MC parameter transmission

-289 fb MC_RW_PTR_TLG MC communication block

-290 fb MC_RD_PHASE Reading of SERCOS communication phase

-291 fb MC_RD_ATTRIBUTE Reading of attribute of an MC parameter

-292 fb MC_RD_NAME Reading of an MC parameter name

-293 fb MC_RD_UNIT Reading of an MC parameter unit

-294 fb MC_RD_MIN_VALUE Reading of minimum value of an MC parameter

-295 fb MC_RD_MAX_VALUE Reading of maximum value of an MC parameter

-296 fb MC_RD_ELEMENT Reading of an MC parameter element

-297 fb MC_WR_ELEMENT Writing of an MC parameter element

-298 fn MC_CONCAT_TO_
IDENT_NO

Creating an MC parameter identification number

WinPCL 06VRS Error Management 15-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

S#ErrorTyp Type Name Comment

-299 fn MC_CONVERT_TO_
IDENT_NO

Converting of an MC parameter identification number

-300 fb MC_TYP01_CAM_
TABLE

Calculation of a cam (cross cutter) for short formats
(Typ 01 – consistency up to the speed)

-301 fb MC_TYP02_CAM_
TABLE

Calculation of a cam (cross cutter) for short formats
(Typ 02 – consistency up to the acceleration)

-302 fb MC_TYP03_CAM_
TABLE

Calculation of a cam (cross cutter) for long formats
(Typ 03 – consistency up to the acceleration)

-303 fb CALC_LINEAR_Y calculates linearized for a default X value of a predetermined X-Y value
table the respective Y value.

-304 fb PID_CONTROL Depending on the wiring of the input variables FB provides "P", "PI",
"PD", "I" and "PID" functionalities.

-305 fb AVERAGE_REAL calculates the floating average value form maximum 64 REAL values.

-306 fb AVERAGE_DINT calculates the floating average value from maximum 1023 DINT values.

-307 fb MC_RD_ARRAY Reading of the operating data of a list parameter (4096 bytes, array)

-308 fb MC_WR_ARRAY Writing of the operating data of a list parameter (4096 bytes, array)

-309 fb MC_RW_ARRAY_
TLG

Transmission of any telegram (263 bytes, array) as e.g.
subsequently added SIS services or other transmission protocols

-310 fb PT2_FILTER serves for low pass filtering of a signal.

-311 fb MC_TYP04_CAM_TA
BLE

Calculation of a cam for pilgrim step mode (TYP04)

-312 fb MC_TYP05_CAM_TA
BLE

Calculation of a cam for a feed movement (TYP05)

-320 fb CTUD_INT UP / DOWN Counter INT corresponding IEC

-321 fb CTUD_UINT UP / DOWN Counter UINT corresponding IEC

-322 fb CTUD_USINT UP / DOWN Counter USINT corresponding IEC

-323 fn NC_ENABLE Synchronization of AXD and NC Initialization

-324 fb PCP_INITIATE Make a connection to a PCP-Slave

-325 fb PCP_ABORT Open a connection

-326 fb PCP_READ Read Object values

-327 fb PCP_WRITE Modify device parameters

-328 fb PCP_IDENTIFY Reading "Type designation plate"

-329 fb PCP_GET_OD Read several object discriptions

-330 fn IB_STATE Determines the status of the 1st INTERBUS

-331 fn ASIM_START ASI-Bus, starts IO data exchange

-332 fn ASIM_STOP ASI-Bus, stopps IO data exchange

-333 fn ASIM_STATE_CH1 ASI-Bus, diagnosis of channel 1

-334 fn ASIM_RESET ASI-Bus reset

-335 fn ASIM_STATE_CH2 ASI-Bus, diagnosis of channel 2

-336 fb ASIM_SLDIAG ASI-Bus, diagnosis of slaves

-337 fn IB_STATE2 Determines the status of the 2nd INTERBUS

Fig. 15-9: Errors in functions and function blocks

15-14 Error Management WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

15.7 Errors in Operations and IL Instructions

Explanation:

S#ErrorTyp indicates the operation or IL instruction which was the error
initiator.

S#ErrorTyp Comment

Error in addition: ADD / ADD(

-10000 USINT

-10001 UINT

-10002 UDINT

-10003 ULINT

-10004 SINT

-10005 INT

-10006 DINT

-10007 LINT

-10008 REAL

-10009 LREAL

Error in subtraction SUB / SUB(

-10010 USINT

-10011 UINT

-10012 UDINT

-10013 ULINT

-10014 SINT

-10015 INT

-10016 DINT

-10017 LINT

-10018 REAL

-10019 LREAL

Error in multiplication MUL / MUL(

-10020 USINT

-10021 UINT

-10022 UDINT

-10023 ULINT

-10024 SINT

-10025 INT

-10026 DINT

-10027 LINT

-10028 REAL

-10029 LREAL

WinPCL 06VRS Error Management 15-15

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

S#ErrorTyp Comment

Error in division DIV / DIV(

-10030 USINT

-10031 UINT

-10032 UDINT

-10033 ULINT

-10034 SINT

-10035 INT

-10036 DINT

-10037 LINT

-10038 REAL

-10039 LREAL

Error in modulo division MOD / MOD(

-10040 USINT

-10041 UINT

-10042 UDINT

-10043 ULINT

-10044 SINT

-10045 INT

-10046 DINT

-10047 LINT

Subscripting beyond type limit

-10050 USINT/SINT subscript

-10051 UINT/INT subscript

-10052 UDINT/DINT subscript

-10053 ULINT/LINT subscript

Comparison not executable, type REAL

-10060 GT, greater than

-10061 GE, greater than or equal to

-10062 EQ, equal

-10063 LE, less than or equal to

-10064 LT, less than

-10065 NE, not equal to

Pointer error

-10070 Pointer error, access beyond original data

-10071 Pointer error, attempt to write to an input variable

-10072 Pointer error, access to NIL pointer

Time error

-10080 Addition (ADD), greater than 99d10h5m34s590ms

-10081 Subtraction (SUB), less than 0ms

Fig. 15-10: Errors in operation and IL instructions

15-16 Error Management WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

15.8 Errors with REAL Operations in Borderline Cases

Explanation:

NaN - Not a Number Result of a non-executable operation

oo - Infinite Result of a range overflow

Number Any number except zero, oo and NaN

The second lines indicates S#ErrorTyp/S#ErrorNr or no error.

ADD Number Zero oo - oo NaN

Number + Number Number invalid invalid invalid

No error No error -10008/2 -10008/3 -10008/8

Zero + Number Zero invalid invalid invalid

No error No error -10008/2 -10008/3 -10008/8

oo + invalid invalid invalid invalid invalid

-10008/2 -10008/2 -10008/2 -10008/8 -10008/8

NaN + invalid invalid invalid invalid invalid

-10008/8 -10008/8 -10008/8 -10008/8 -10008/8

SUB Number Zero oo - oo NaN

Number - Number Number invalid invalid invalid

No error No error -10018/3 -10018/2 -10018/8

Zero - Number Zero invalid invalid invalid

No error No error -10018/3 -10018/2 -10018/8

oo - invalid invalid invalid invalid invalid

-10018/2 -10018/2 -10018/8 -10018/2 -10018/8

NaN - invalid invalid invalid invalid invalid

-10018/8 -10018/8 -10018/8 -10018/8 -10018/8

MUL Number Zero oo - oo NaN

Number * Number Number invalid invalid invalid

No error No error -10028/2 -10028/3 -10028/8

Zero * Number Zero invalid invalid invalid

No error No error -10028/8 -10008/8 -10028/8

oo * invalid invalid invalid invalid invalid

-10028/2 -10028/2 -10028/2 -10028/3 -10028/8

NaN * invalid invalid invalid invalid invalid

-10028/8 -10028/8 -10028/8 -10028/8 -10028/8

WinPCL 06VRS Error Management 15-17

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

DIV Number Zero oo - oo NaN

Number / Number invalid invalid invalid invalid

No error -10038/8 -10038/8 -10038/8 -10038/8

Zero / Zero invalid invalid - Zero invalid

No error -10038/8 -10038/8r -10038/8 -10038/8

oo / invalid invalid invalid invalid invalid

-10038/2 -10038/2 -10038/8 -10038/8 -10038/8

NaN / invalid invalid invalid invalid invalid

-10038/8 -10038/8 -10038/8 -10038/8 -10038/8

Fig. 15-11: Errors with REAL-Operations in Borderline Cases

15.9 Sequential Function Chart Errors (SFC)

Errors, which can occur in connection with the execution of a sequence
are grouped by errors which can be influenced by the user, such as
repeated activation of an action, and errors which cannot be influenced by
the user (general processing errors). The following table is an overview of
both error groups:

S#ErrorTyp Cause Error description

-11000 General processing error Cannot be influenced by the user

-11001 Multiple active connection to an
action qualifier input
"L","D","SD","DS","SL"

Further active connection(s) to action qualifier input "L" ignored

-11002 -"- Further active connection(s) to qualifier input "D" ignored

-11003 -"- Further active connection(s) to action qualifier input "SD" ignored

-11004 -"- Further active connection(s) to action qualifier input "DS" ignored

-11005 -"- Further active connection(s) to action qualifier input "SL" ignored

-11006 Several new active connections
to different action qualifier inputs
while input "L","D","SD","DS"or
"SL" is already active

Active connection(s) to action qualifier input "D","SD","DS","SL"
ignored because input "L" was active before

-11007 -"- Active connection(s) to action qualifier input "L","SD","DS","SL"
ignored because input "L" was active before

-11008 -"- Active connection(s) to action qualifier input "D","L","DS","SL"
ignored because input "SD" was active before

-11009 -"- Active connection(s) to action qualifier input "D","SD","L","SL"
ignored because input "DS" was active before

-11010 -"- Active connection(s) to action qualifier input "D","SD","DS" ignored
because input "SL" was active before

-11011 Several active connections to
different action qualifier inputs

Input "L" got the priority of several active connections to action
qualifier inputs ("D", "SD","DS","SL" were ignored)

-11012 -"- Input "D" got the priority of several active connections to qualifier
inputs ("L", "SD","DS","SL" were ignored)

-11013 -"- Input "SD" got the priority of several active connections to action
qualifier inputs ("D", "L","DS","SL" were ignored)

-11014 -"- Input "L" got the priority of several active connections to action
qualifier inputs ("DS", "SD","L","SL" were ignored)

15-18 Error Management WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

S#ErrorTyp Cause Error description

-11015 Active connections to a stored
and time-relayed action qualifier
input while the action was
already active

Active connection to an action qualifier input "SL" ignored because
the action was already activated with time-stored delay ("SD")

-11016 -"- Active connection to an action qualifier input "SD" ignored
because the action was already activated with time-stored delay
("SL")

-11017 A sequence calls itself, directly or
indirectly (recursion)

Sequence processing canceled

-11018 to

-11050 General processing error Cannot be influenced by the user

-11101 No active step contained in the
sequence

Sequence structure cannot be restarted automatically

-11102 Not enough active steps
contained in the sequence

Sequence structure cannot be restarted automatically

-11103 Too many active steps contained
in the sequence

Sequence structure cannot be restarted automatically

Fig. 15-12: Sequential function chart errors (SFC)

15.10 S#ErrorNr

0 - No error

1 - Invalid input parameter
The operation, function, function block is not executed. Feed back of
unreasonable results possible

2 - Range exceeded
Invalid result.

3 - Range fallen below
Invalid result.

4 - Conversion error
The input parameter cannot be converted correctly. Conversion is done
with an internally modified input parameter. Feed back of unreasonable
results possible

5 - Division by zero
Invalid result.

6 - Internal transmission error
An error occurred during an internal data request from / to the CNC.

7 - Subscript error, range exceeded
The operation is not executed.

8 - Operation not defined

WinPCL 06VRS Error Management 15-19

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

9 - Pointer error, invalid address

10 - Error during activation of action blocks

233 - General SYNAX error

234 - Memory not available

235 - Addressed PC104 module not available
Unable to serve this bus connection, the addressed PC104 module is not
available.

236 - Process data channel overflow
More than eight TLD, OTD, MTD, NC_VAR, TLED, TLBD, DCD
programmed in parallel.

237 - Too many accesses to variables
More than 100 NC variables have been programmed.

238 - Interface not open
A serial interface, which is not yet open, is accessed by WR_STRING or
RD_STRING.

239 - STRING overflow processing
When using STRING functions, a STRING with more than 255 characters
occurred.

240 - Invalid input parameter DEVICE
A negative device number or an excessive DEVICE number was
transmitted during parameterization of the serial interface.

241 - Invalid input parameter SERNR
A negative number or an excessive number for the serial interface
SERNR was transmitted during parameterization of the serial interface.

242 - Invalid input parameter BAUD
A negative number or an excessive number for the baud rate BAUD was
transmitted during parameterization of the serial interface.

243 - Invalid input parameter DATA
A negative number or an excessive number for the number of data bits
DATA was transmitted during parameterization of the serial interface.

244 - Invalid input parameter PARITY
A negative number or an excessive number for the evaluation of the
PARITY bit was transmitted during parameterization of the serial
interface.

245 - Invalid input parameter STOP
A negative number or an excessive number for the number of STOP bits
was transmitted during parameterization of the serial interface.

15-20 Error Management WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

246 - Invalid input parameter PROTOKOL
A negative number or an excessive number for the type of serial interface
PROTOKOL was transmitted during parameterization of the serial
interface.

247 - Invalid input parameter HANDSH
A negative number or an excessive number for the type of handshake
HANDSH was transmitted during parameterization of the serial interface.

248 - Interface not available

249 - All COM interfaces already open

250 - Not used any longer

251 - Not used any longer

252 - General interface error
Parity, frame, overrun

253 - Transmitter buffer overflow

254 - Receiver buffer overflow

255 - Timeout acknowledgement telegram

WinPCL 06VRS Glossary 16-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

16 Glossary

Absolute time
The combination of time of day and date information.

Access path
The association of a symbolic name with a variable for the purpose of
open communication.

Action
A Boolean variable, or a collection of operations to be performed, together
with an associated control structure.

Action block
A graphical language element which utilizes a Boolean input variable to
determine the value of a Boolean output variable or the enabling condition
for an action, according to a predetermined control structure.

Address constant
Constant A#xxxx which contains the address information for Firmware
data types.

Address of
Operator P# to establish the address of a variable; is needed at runtime to
determine the basic address of a POINTER.

ANY_BIT
 (generic data type) A combination of several data types as a group type,
contains LWORD, DWORD, WORD, BYTE, BOOL.

ANY_DATE
 (generic data type) A combination of several data types as a group type,
contains DATE_AND_TIME, DATE, TIME_OF_DAY.

ANY_ELEMENTARY
 (generic data type) A combination of several data types as a group type,
contains

TIME,

ANY_BIT (LWORD, DWORD, WORD, BYTE, BOOL)

ANY_DATE (DATE_AND_TIME, DATE, TIME_OF_DAY),

ANY_INT (LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT),

ANY_REAL (LREAL, REAL),

ANY_STRING (STRING, CHAR, WSTRING, WCHAR).

ANY_INT
 (generic data type) A combination of several data types as a group type,
contains LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT.

16-2 Glossary WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

ANY_MAGNITUDE
 (generic data type) A combination of several data types as a group type,
contains

TIME,

ANY_INT (LINT, DINT, INT, SINT, ULINT, UDINT, UINT, USINT) und

ANY_REAL (LREAL, REAL).

ANY_NUM
 (generic data type) A combination of several data types as a group type,
contains ANY_INT (LINT, DINT, INT, SINT, ULINT, UDINT, UINT,
USINT) and ANY_REAL (LREAL, REAL).

ANY_REAL
 (generic data type) A combination of several data types as a group type,
contains LREAL, REAL.

ANY_STRING
 (generic data type) A combination of several data types as a group type,
contains STRING, CHAR, WSTRING, WCHAR.

ARRAY
An aggregate that consists of data objects, with identical attributes, each
of which may be uniquely referenced by subscripting (ISO).

Assignment
A mechanism to give a value to a variable or to an aggregate (ISO).

Bit String
A data element consisting of one or more bits.

BOOL
Elementary data type, seize: 1 Bit

Standard initial value: FALSE

Range of values: FALSE / TRUE and 0/1 and 2#0, 2#1 respectively

BYTE
Elementary data type, seize: 8 Bit

Standard initial value: 16#0

Range of values: 16#00 ...16#FF

Call
A language construct for invoking the execution of a function or function
block.

CHAR
Character, elementary data type, seize: 8 Bit

Standard initial value: ’’ (empty)

Range of values: 16#00 ...16#FF

Character string
An aggregate that consists of an ordered sequence of characters.

WinPCL 06VRS Glossary 16-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Comment
A language construct for the inclusion of text in a program and having no
impact on the execution of the program (ISO).

Compile
To translate a program organization or a data type specification into its
machine language equivalent or an intermediate form.

Configuration
A language element which corresponding to a programmable controller
system as defined in IEC 1131-1.

Counter function block
A function block which accumulates a value for the number of changes
sensed at one or more specified inputs / input parameters.

Data type
A set of values together with a set of permitted operations (ISO).

Date and time
The date within the year and the time of day represented according to
ISO 8601.

Declaration
The mechanism for establishing the definition of a language element. A
declaration normally involves attaching an identifier to the language
element, and allocating attributes such as data types and algorithms to it.

DINT
 (double integer) Elementary data type, seize: 32 Bit

Standard initial value: 0

Range of values: -2147483648...2147483647

Direct representation
A means of representing a variable in a programmable controller program
from which a manufacturer-specified correspondence to a physical or
logical location (see logical location) may be determined directly.

DWORD
 (double word) Elementary data type, seize: 32 Bit

Standard initial value: 16#0

Range of values: 16#00000000 ...16#FFFF FFFF

16-4 Glossary WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Error

S#ErrorFlg
Type: BOOL

S#ErrorFlg= FALSE, up to this time there was no error (standard);
S#ErrorNr/S#ErrorTyp are unimportant.

S#ErrorFlg= TRUE, at least one error occurred which is further specified
by S#ErrorNr, S#Error type.

S#ErrorNr
Type USINT, standard: 0,

S#ErrorNr> 0, detailed information about the error.

S#ErrorTyp
Type INT, standard: 0, detailed information about the causer,

S#ErrorTyp< 0, standard FN / FB, Firmware FN / FB or operations,

S#ErrorTyp> 0, reserved for user files.

Evaluation
The process of establishing a value for an expression or function, or for
the outputs of a network or function block, during program execution.

Execution control element
A language element which controls the flow of program execution.

Falling edge
The change from 1 to 0 of a Boolean variable.

Firmware-
In connection with a function block, function, data type.

Completion of the minimum equipment of standard elements required by
the standard; can be used, but not be modified by the user.

Focussed
Focussed file: file that is edited just now.

Function (procedure)
A program organization unit with 1...n input variables and internal
variables which, when executed, yields exactly one data element and
possibly additional output variables (which may be multi-valued, e.g. an
array or structure), and whose invocation can be used in textual
languages as an operand in an expression. Additionally, further outputs
can be operated as output parameters (new in IEC 61131-3 2nd Edition).

Type name of the function:

Name with which the function is saved.

The name of the function is identical with the name of the main output of
the function.

The type of the function corresponds to the type of the main output of the
function.

WinPCL 06VRS Glossary 16-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Function block
Program organization unit, with 1...n input parameters, internal variables
and 1...m output parameters.

Type name of the FB:

Name with which the function block is saved. See also function block
type.

Application name of a FB / fb / Fb:

Name of the concrete application of the FB / fb in IEC 61131-3 also called
instance, copy, case or assignment name (see also function block
instance).

Function block diagram
A network in which the nodes are function block instances, graphically
represented functions (procedures), variables, literals, and labels.

Function block instance
An instance of a function block type.

Function block type
A programmable controller programming language element consisting of:

• the definition of a data structure partitioned into input, output an
internal variables;

• a set of operations to be performed upon the elements of the data
structure when an instance of the function block type is invoked.

Generic data type
A combination of several data types as a group type (e.g. ANY_BIT
contains LWORD, DWORD, WORD, BYTE, BOOL).

Global variable
A variable whose scope is global.

The programming system has a data pool on resource level. Each
program and each function block in the resource can be reached by
VAR_EXTERNAL.

Global scope
Scope of a declaration applying to all program organization units within a
resource or configuration.

Identifier
A combination of letters, numbers, and underline characters which begins
with a letter or underline and which names a language element.

Initial step
Within a procedure the first step as starting step is always very important.
It is called initial step of the procedure. With the initial step the procedure
starts and stops.

Initial value
The value assigned to a variable at system start-up.

16-6 Glossary WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Input variable (input)
A variable which is used to supply an argument to a program organization
unit.

Instance
Generally: an individual named copy of a data structure.

Here: connected with a function block type or a program type which is
preserved from on call of the belonging function to the next.

Instance name
An identifier associated with a specific instance.

Instantiation
The creation of an instance.

INT
(integer) Elementary data type, seize:16 Bit

Standard initial value: 0

Range of values: -32768...32767

Integer literal
Literal, which directly represents a value of type SINT, INT, DINT, LINT
and USINT, UINT, UDINT respectively, or ULINT.

Invocation
The process of initiating the execution of the operations specified in a
program organization unit.

Keyword
A lexical unit that characterizes a language element, e.g. "TRUE".

Label
A language construction naming an instruction, network, or group of
networks, and including an identifier.

Language element
Any item identified by a symbol on the left-hand side of a production rule
in the formal specification given in annex B IEC 1131, 2nd Edition.

LINT
(long integer) Elementary data type, seize: 64 Bit

Standard initial value: 0

Range of values: -263...263-1

Literal
A lexical unit that directly represents a value (ISO).

Loaded
Loaded file: file that was loaded in the main memory of the PC and over
which at least one editor window is opened.

One of the windows can be active at this time.

WinPCL 06VRS Glossary 16-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Local menu
(PopUp menu) Menu that allows in every editor the access to every other
editor.

Call by pressing <Shift>+<F10>.

Local scope
The scope of a declaration or label applying only to the program
organization unit in which the declaration or label appears.

Logical location
The location of a hierarchically addressed variable in a schema which
may or may not bear any relation to the physical structure of the
programmable controller’s inputs, outputs, and memory.

LWORD
(long word) Elementary data type, seize: 64 Bit

Standard initial value: 16#0

Range of values: 16#00000000 00000000..16#FFFFFFFF FFFFFFFF

Main File
File that can be preset in the menu „Compiler / Select main file“ and from
which it is possible to compile, archive, save etc., matter if the file is
loaded and / or active.

Network
An arrangement of nodes and interconnecting branches.

NIL-POINTER
Pointer without assigned address. The access to a variable, i.e. the
memory, is not possible. The control is effected during the runtime of the
program.

Off-delay / on-delay timer function block
A function block which delays the falling / rising edge of a Boolean input
by a specific duration.

Operand
A language element on which an operation is performed.

Operation modes in the programming and commissioning
system
Indicating mode, editing mode, status indication, online change.

Operator
A symbol that represents the action to be performed in an operation.

Output variable (output)
A variable which is used to return the result(s) of the evaluation of a
program organization unit.

Overloaded
With respect to an operation or function, capable of operating on data of
different types, e.g. ADD for INT or REAL.

16-8 Glossary WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Pointer
A pointer variable contains the address of a dynamic variable of a certain
basis type. There are only typed pointers with length control during the
access on the memory.

It is possible to assign a value to a pointer variable by the means of a P#
operator (address of...):

The standard initial value is NIL.

PopUp-Menü
(Local menu) Menu that allows in every editor the access to further editor
functions.

Call by pressing <Shift>+<F10>.

Power flow
The symbolic flow of electrical power in a ladder diagram, used to denote
the progression of a logic solving algorithm.

Program
The program is the smallest software unit which can be loaded and
started. A program can use function blocks and functions.

Program (verb)
To design, write and test user programs.

Program organization unit
A function, function block or program.
NOTE – This term may refer to either a type or an instance.

REAL
(real number) Elementary data type, seize: 32 Bit

Standard initial value: 0.0

Range of values:
-3.402823E38 ...-1.175495E-38 und +1.175495E-38 ... +3.402823E38

Concerning fixed-point numbers the number of the allowed characters is
7 Digits.

Real literal
A literal representing data of type REAL or LREAL.

Resource
A language element corresponding to a ”signal processing function” and
its “main machine interface” and “sensor and actuator interface
functions”, if any, as defined in IEC 1131-1.

Retentive data
Data stored in such a way that its value remains unchanged after a power
down / power up sequence.

Return
A language construction within a program organization unit designating an
end to the execution sequences in the unit.

WinPCL 06VRS Glossary 16-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Rising edge
The change from 0 to 1 of a Boolean variable.

Scope
That portion of a language element within which a declaration or label
applies.

Semantics
The relationships between the symbolic elements of a programming
language and their meaning, interpretation and use.

Single data element
A data element consisting of a single value.

Single-element variable
A variable which represents a single data element.

SINT
(short integer) Elementary data type, seize: 8 Bit

Standard initial value: 0

Range of values: -128..127

Special ...
In connection with function, function block and data type.

Protected user files or INDRAMAT files which can be used, but not be
modified by the client.

Standard ...
In connection with function, function block and data type.

Minimum equipment of elements required by the standard; can be used,
but not be modified by the client.

Step
A situation in which the behavior of a program organization unit with
respect to its inputs and outputs follows a set of rules defined by the
associated actions of the step.

STRING
Character string, elementary data type, 256 Byte are reserved for them.

Standard initial value: ’’ (empty),

Byte 1...255 can contain useable text,

Byte 0 contains the length, initial value: 16#00!

STRING[xx], character string with limited length, (xx+1) Byte are reserved
for them.

Standard initial value: ’’ (empty),

Byte 1...xx can contain useable text,

Byte 0 contains the length, initial value: 16#00!

Structured data type
An aggregate data type which has been declared using a STRUCT or
FUNCTION_BLOCK declaration.

16-10 Glossary WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Subscripting
A mechanism for referencing an array element by means of an array
reference and one or more expressions that, when evaluated, denote the
position of the element.

Symbolic representation
The use of identifiers to name variables.

Task
An execution control element providing for periodic or triggered execution
of a group of associated program organization units.

Temporary flag
Flags allow to take temporary results out of the ladder diagram network.
The result of the branch situated in front of the temporary flag is taken
over.

TIME
(time) Elementary data type, seize: 32 Bit

Standard initial value: T#0s

Range of values: 0ms...23d23h59m59s999ms

Time literal
A literal representing data of type TIME, DATE, TIME_OF_DAY, or
DATE_AND_TIME.

Transition
The condition whereby control passes from one or more predecessor
steps to one or more successor steps along a directed link.

UDINT
(unsigned double integer) Elementary data type, seize: 32 Bit

Standard initial value: 0

Range of values: 0..4294967295

UINT
(unsigned integer) Elementary data type, seize: 16 Bit

Standard initial value: 0

Range of values: 0..65535

ULINT
(unsigned long integer) Elementary data type, seize: 64 Bit

Standard initial value: 0

Range of values: 0...264-1

Unsigned integer
An integer literal not containing a leading plus (+) or minus (-) sign.

User
In connection with program, function, function block, data type; written
and governed by the user.

WinPCL 06VRS Glossary 16-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

User administration
Component of the programming system to give access rights to every
concrete user.

The user is assigned to a user group and receives in this way their rights.

Group Description

Administrator All commands, assignment of rights

WinPCL specialist All commands

PLC programmer All public rights

Service No commands to change files

Observer (guest) No commands to change files

USINT
(unsigned short integer) Elementary data type, seize: 8 Bit

Standard initial value: 0

Range of value: 0..255

Wired OR
A construction for achieving the Boolean OR function in the LD language
by connecting together the right ends of horizontal connectives with
vertical connectives.

WORD
Elementary data type, seize: 16 Bit

Standard initial value: 16#0

Range of values: 16#0000 ...16#FFFF

Work file
File that is edited in the programming and commissioning system:

user program, user function block, user function, user data type.

16-12 Glossary WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL 06VRS Glossary 16-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Abbreviations

AQ
Action qualifier

AT
Action time, completion for the AQ – action qualifier L, D, DS, SD, SL for
action blocks, constants or variables of type TIME

CNC
Computerized Numerical Control

FB
Function block

Special: user written function block, user FB

fb
Special: Firmware / standard function block

Fb
Special: special function block, no possibility to edit

FBD
Function block diagram

FN
Function

Special: user written function, user FN

fn
Special: Firmware function, standard function

Fn
Special: special function, no possibility to edit

GUI
Graphical user interface

IBS
Interbus, field bus

IL
Instruction list

16-14 Glossary WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

LD
Ladder diagram

MAP file
File containing the address information of the project in the PLC for GUI
and the status display.

MUI
User interface for the control

PC
Personal Computer

PLC
Programmable controller

POU
Program organization unit, i.e. a program, function block or function

PR
Program; special: user written program, user program

RE
Resource; special: user written resource file to establish and globally
enable variables, to establish tasks and to assign program instances to
this tasks.

SFC
Sequential function chart

TY
Data type,

Special: user written data type, user TY

ty
Special: Firmware data type, standard data type

Ty
Special: special data type, no possibility to edit

WinPCL 06VRS List of Figures 17-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

17 List of Figures
Fig. 1-1: Further documentation 1-2

Fig. 3-1: Hazard classification (according to ANSI Z535) 3-1

Fig. 4-1: Main menu 4-1

Fig. 4-2: "File" menu item 4-1

Fig. 4-3: "File / New" menu item 4-2

Fig. 4-4: "File / Open" menu item 4-3

Fig. 4-5: Password input box to open coded files 4-3

Fig. 4-6: Selection of current control 4-4

Fig. 4-7: Selecting the current variant 4-5

Fig. 4-8: "File / Save as" menu item 4-6

Fig. 4-9: File properties, "File information" 4-6

Fig. 4-10: File properties, changing the password(s) 4-7

Fig. 4-11: Access with entered and fulfilled / not fulfilled password 4-7

Fig. 4-12: Allow to write on absolute input variables in this file 4-8

Fig. 4-13: File properties, "Statistics" 4-8

Fig. 4-14: "File / Print" menu item 4-9

Fig. 4-15: Print rungs 4-10

Fig. 4-16: Print options, content of the printout (Contents) 4-11

Fig. 4-17: Supplement to the print options, content of the printout
 (Contents) 4-11

Fig. 4-18: Print options, settings of the footer (Footer) 4-12

Fig. 4-19: Supplement to the print options, settings of the footer (Footer)
 4-12

Fig. 4-20: Print options, view of all editors (All) 4-13

Fig. 4-21: Complement to printing options, view of all editors (All) 4-14

Fig. 4-22: Print options, ladder diagram editor (LD) 4-14

Fig. 4-23: Supplement to print options, ladder diagram editor (LD) 4-14

Fig. 4-24: Print options, instruction list editor (IL) 4-15

Fig. 4-25: Print options, declaration editor (DECL) 4-15

Fig. 4-26: Print options, IO editor (IO) 4-16

Fig. 4-27: Print options, SFC list (SFC) 4-16

Fig. 4-28: Print options, action block (AB) 4-17

Fig. 4-29: Print options, SFCL list (SFC Lists) 4-17

Fig. 4-30: Print options, cross reference list (CRL) 4-18

Fig. 4-31: Print options, arrays) 4-19

Fig. 4-32: Print options, structures) 4-19

Fig. 4-33:Print options, imports 4-20

Fig. 4-34: Printer selection 4-20

Fig. 4-35: Set up page for printing 4-21

Fig. 4-36: "File / Archive" menu item 4-22

Fig. 4-37: File archive 4-22

Fig. 4-38: Compound archive beginning with the loaded file 4-23

17-2 List of Figures WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 4-39: Compound archive starting from the current resource 4-24

Fig. 4-40: Free file selection 4-25

Fig. 4-41: Load archive 4-26

Fig. 4-42: File import 4-27

Fig. 4-43: Export 4-28

Fig. 4-44: "Edit" menu item 4-29

Fig. 4-45: Finding a character string 4-30

Fig. 4-46: Finding and replacing of a character string 4-31

Fig. 4-47: "View" menu item 4-33

Fig. 4-48: Import view of a variant 4-34

Fig. 4-49: Instance view of a variant 4-35

Fig. 4-50: File overview of a variant 4-36

Fig. 4-51: Cross reference list pop-up menu 4-37

Fig. 4-52: Cross reference on resource level 4-38

Fig. 4-53: Cross reference list of a function block with functional sequence
 4-39

Fig. 4-54: Information from the cross reference list 4-39

Fig. 4-55: Search for the variable "I_Start" 4-40

Fig. 4-56: Selection of the file where the variable "I_Start" can be tracked
 further. 4-41

Fig. 4-57: Cross reference help pop-up menu 4-42

Fig. 4-58: Cross references - variations in font color of cross references
 4-43

Fig. 4-59: Display of errors in the cross reference list 4-43

Fig. 4-60: Options - cross reference list 4-44

Fig. 4-61: Import window, tree representation, instance view 4-45

Fig. 4-62: Import window, tree representation, import view 4-45

Fig. 4-63: Import window, list without preview, instance view 4-46

Fig. 4-64: Import window, list with preview, instance view 4-46

Fig. 4-65: "Compiler" menu item 4-47

Fig. 4-66: Dialog window for selecting the current resource 4-48

Fig. 4-67: "Start" menu item 4-49

Fig. 4-68: Download of a resource 4-50

Fig. 4-69: Status displays in different editors 4-52

Fig. 4-70: Edit window after "Upload Retain Data (Compound)" 4-53

Fig. 4-71: Edit window in menu item "Edit variable values" 4-55

Fig. 4-72: Forcing variables, here in the ladder diagram 4-56

Fig. 4-73: Status of ARRAYs / structures, here system variables of a step
 4-57

Fig. 4-74: Forcing structured data type elements 4-58

Fig. 4-75: "Tools" menu item 4-59

Fig. 4-76: WinPCL options, desktop 4-60

Fig. 4-77: Explanations on WinPCL options, desktop 4-60

Fig. 4-78: WinPCL options, all editors 4-61

Fig. 4-79: Explanations on WinPCL options, all editors 4-61

WinPCL 06VRS List of Figures 17-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 4-80: WinPCL options, ladder diagram 4-62

Fig. 4-81: Explanations on WinPCL options, ladder diagram, tools 4-62

Fig. 4-82: WinPCL options, instruction list 4-63

Fig. 4-83: WinPCL options, declaration editor 4-63

Fig. 4-84: WinPCL options, IO editor 4-64

Fig. 4-85: WinPCL options, sequential function chart 4-64

Fig. 4-86: WinPCL options, action block editor 4-65

Fig. 4-87: WinPCL options, SFC list 4-65

Fig. 4-88: WinPCL options, Cross reference list 4-66

Fig. 4-89: WinPCL options, Compile 4-67

Fig. 4-90: WinPCL options, compile 4-67

Fig. 4-91: WinPCL options, download 4-68

Fig. 4-92: WinPCL options, download 4-68

Fig. 4-93: "Tools / PLC information" menu item 4-69

Fig. 4-94: Compound memory requirements 4-71

Fig. 4-95: Menu item "Tools / Event display" with pop-up menu 4-72

Fig. 4-96: System error display 4-73

Fig. 4-97: Miniature control panel selection window 4-74

Fig. 4-98: Assignment of ProVi messages 4-76

Fig. 4-99: Dialog for selecting the message type 4-77

Fig. 4-100: Find dialog of the Entry ProVi message window 4-78

Fig. 4-101: The "blue i" indicating a ProVi message 4-78

Fig. 4-102: Assigning the SFC properties 4-81

Fig. 4-103: Dialog for entering the module number 4-82

Fig. 4-104: The "blue i" indicates a sequential function chart with
 diagnosis 4-82

Fig. 4-105: Impermissible use of the temporary flag "Output_01" (yellow).
 4-83

Fig. 4-106: Hiding FBs from the diagnosis by defined variables (yellow)
 4-84

Fig. 4-107: Hidden function block 4-84

Fig. 4-108: Diagnosis display of absolute addresses in FBs 4-85

Fig. 4-109: Declaration of two instances of DRILL_FB 4-85

Fig. 4-110: Diagnosis module assignment 4-86

Fig. 4-111: Examples of module number assignments 4-87

Fig. 4-112: "Tools / Password / Login" menu item 4-88

Fig. 4-113: "Tools / Password / Logout" menu item 4-88

Fig. 4-114: "Tools / Password / Change" menu item 4-89

Fig. 4-115: Selection with option "Display only identic names" 4-93

Fig. 4-116: Selection with option "Free name assignment" ("Display
 only identic names" is deactivated) 4-94

Fig. 4-117: Selection window for local files 4-95

Fig. 4-118: Selection window for downloaded files 4-95

Fig. 4-119: Selection window for remote PC 4-96

Fig. 4-120: Selection window for archives 4-96

17-4 List of Figures WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 4-121: Comparison result 4-97

Fig. 4-122: Pictograms and their meaning 4-97

Fig. 4-123: Buttons and its meaning 4-98

Fig. 4-124: "Window" menu item 4-98

Fig. 4-125: Closing of the last window of a file 4-99

Fig. 4-126: Cascade windows 4-99

Fig. 4-127: Tile windows horizontally 4-100

Fig. 4-128: Tile windows vertically 4-101

Fig. 4-129: Minimize all windows 4-101

Fig. 4-130: "? Help" menu item 4-102

Fig. 4-131: <F1> help on cursor position 4-103

Fig. 4-132: Help topics on WinPCL 4-104

Fig. 4-133: Enable service 4-105

Fig. 4-134: Info about WinPCL 4-105

Fig. 4-135: Info about "Multi Task Graphic User Interface (MTGUI)" 4-106

Fig. 4-136: Example of "Help on a particular error <Ctrl>+<F1>" 4-106

Fig. 4-137: Example of "Help on declaration <Shift>+<F1>" 4-107

Fig.. 4-138: Language selection 4-108

Fig. 4-139: Language identification according to DIN / INN 4-108

Fig. 4-140: Setup menu of an HMI GUI (WinMTC or WinISP) 4-109

Fig. 4-141: Defining the computer name and the IP address 4-110

Fig. 4-142: Dialog for entering the desired server name 4-110

Fig. 4-143: Function interface startup with display of test criteria 4-111

Fig. 4-144: Error message in case of an unsuccessful version check
 4-111

Fig. 4-145: General rights of a user "n" 4-112

Fig. 4-146: WinPCL rights of user "n" 4-112

Fig. 4-147: List of F key combinations 4-114

Fig. 4-148: Operating modes 4-118

Fig. 4-149: Operating modes - indication in relation to the particular editor
 4-118

Fig. 4-150: SFCs with pictograms 4-119

Fig. 4-151: Properties - indication in networks and SFCs 4-119

Fig. 4-152: POUs and data types 4-120

Fig. 5-1: Declaration part of a program 5-2

Fig. 5-2: Declaration line during the entry 5-3

Fig. 5-3: Declaration line after the entry is completed - without errors 5-3

Fig. 5-4: Conflict between absolute address of variable and data type 5-3

Fig. 5-5: Online help 5-3

Fig. 5-6: Error caused by multiple use of a name 5-4

Fig. 5-7: Selection window "Basis types" 5-4

Fig. 5-8: Selection window, ARRAYs 5-5

Fig. 5-9: Selection window, structures 5-6

Fig. 5-10: Selection window, function block types 5-7

WinPCL 06VRS List of Figures 17-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 5-11: Selection window, programs 5-8

Fig. 5-12: Status in the declaration editor 5-9

Fig. 5-13: Find function in the declaration editor 5-13

Fig. 5-14: Finding and deleting unused declarations 5-13

Fig. 5-15: List of cross references to the declaration 5-14

Fig. 5-16: Options, declaration 5-14

Fig. 5-17: Declaration part of a resource 5-17

Fig. 5-18: Comments on figure 2-11 5-18

Fig. 5-19: Declaration part of a program 5-20

Fig. 5-20: Function "SELECT_INT" 5-24

Fig. 5-21: Interface of the function according to the declaration part 5-24

Fig. 5-22: Declaration part of the structure "TOOL" 5-25

Fig. 5-23: Declaration part of the elementary array "PALLET" 5-27

Fig. 5-24: Declaration part of the structured array "T_CHANGER" 5-27

Fig. 5-25: Coupling with other control components 5-30

Fig. 6-1: Selection window, operators 6-2

Fig. 6-2: Selection window, functions 6-3

Fig. 6-3: Selection window, instances of function blocks 6-4

Fig. 6-4: Selection window, SFCs 6-5

Fig. 6-5: Selection window, labels 6-6

Fig. 6-6: Selection window, variables 6-7

Fig. 6-7: Window to select the absolute address 6-8

Fig. 6-8: Entry of an IL line, editing of a variable 6-9

Fig. 6-9: Entry of an IL line, variables identified as being correct, network
still untested, yellow marginal marking 6-9

Fig. 6-10: Entry of an IL line, operator identified as being faulty, network
 still untested, yellow marginal marking 6-9

Fig. 6-11: Network without errors after editing, marginal marking is gray
 6-10

Fig. 6-12: Network faulty after editing, marginal marking is red 6-10

Fig. 6-13: IL editor options 6-11

Fig. 6-14: Status display in the instruction list 6-12

Fig. 6-15: Before the online editing 6-13

Fig. 6-16: Online editing, inserting an empty line 6-13

Fig. 6-17: Online editing, filling in a line 6-14

Fig. 6-18: Online editing completed with the download 6-14

Fig. 6-19: Overview of online capable changes (selection) 6-15

Fig. 6-20: Comparison of edge contacts and R_TRIG / F_TRIG in LD and
 IL 6-16

Fig. 6-21: Online change in case of LD operations 6-17

Fig. 6-22: Online change in case of coils 6-18

Fig. 6-23: Pop-up menu of the instruction list editor 6-19

Fig. 6-24: Search function in the IL editor 6-21

Fig. 6-25: Cross reference list with IL applications 6-21

Fig. 6-26: Print options in Instruction list 6-22

17-6 List of Figures WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 6-27: Call types of function blocks in the declaration part 6-30

Fig. 6-28: Unconditional call of a function block in LD and IL 6-30

Fig. 6-29: Conditional call of a function block with "CALC / CALCN" 6-31

Fig. 6-30: Conditional call of a function block by skipping 6-31

Fig. 7-1: Ladder diagram network with comment and label 7-1

Fig. 7-2: Footer command in an empty network 7-2

Fig. 7-3: Footer commands "additional terminating elements" 7-3

Fig. 7-4: Footer with additional contacts 7-3

Fig. 7-5: Selection window, operators 7-4

Fig. 7-6: Selection window, functions 7-5

Fig. 7-7: Selection window, instances of function blocks 7-6

Fig. 7-8: Selection of the right connection 7-6

Fig. 7-9: Selection window, label 7-7

Fig. 7-10: Selection window, SFCs 7-8

Fig. 7-11: Selection window, variables 7-9

Fig. 7-12: Window to select the absolute address 7-10

Fig. 7-13: Deletion in the network with the key 7-11

Fig. 7-14: Entry of an LD network, editing of a variable 7-12

Fig. 7-15: Entry of a an LD network, variables identified as being correct,
 network still untested, yellow marginal marking 7-12

Fig. 7-16: Entry of a an LD network, operand identified as being faulty,
 network still untested, yellow marginal marking 7-12

Fig. 7-17: Network without errors after editing, marginal marking is gray
 7-13

Fig. 7-18: Network faulty after editing, marginal marking is red 7-13

Fig. 7-19: Declaration part (example) 7-14

Fig. 7-20: LD with display of the declaration comment coil "coil1" 7-15

Fig. 7-21: LD, declaration comment for coil1 overwritten 7-15

Fig. 7-22: Temporary flag 7-16

Fig. 7-23: Warning when using FN/FB in OR branches 7-17

Fig. 7-24: Workaround when using FN/FB in OR branches 7-17

Fig. 7-25: Declaration part of the function "SELECT_INT" 7-18

Fig. 7-26: Ladder diagram for function "SELECT_INT" 7-19

Fig. 7-27: Comparison of edge contacts and R_TRIG / F_TRIG 7-20

Fig. 7-28: Online change if contacts are concerned 7-21

Fig. 7-29: Online change if coils are concerned 7-22

Fig. 7-30: Declaration part of the function "EXTENSION_OP" 7-23

Fig. 7-31: Selection window for operators 7-24

Fig. 7-32: Ladder diagram for "EXTENSION_OP", margin yellow, untested
 7-24

Fig. 7-33: Example for functions and operations 7-25

Fig. 7-34: Declaration part of the "Window" function 7-25

Fig. 7-35: Declaration part of the "WINDOW_COMP" example 7-26

Fig. 7-36: Ladder diagram of FN "WINDOW_COMP" 7-27

Fig. 7-37: Declaration part for function block "EXTENSION_FB" 7-27

WinPCL 06VRS List of Figures 17-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 7-38: Selection window for determination of the connection points
 7-28

Fig. 7-39: Complete ladder diagram 7-28

Fig. 7-40: LD editor options 7-29

Fig. 7-41: Status display in the ladder diagram 7-30

Fig. 7-42: Before an online modification, still status = On 7-31

Fig. 7-43: Inserting the locking contact online (1st step) 7-31

Fig. 7-44: Inserting the locking contact online (2nd step) 7-32

Fig. 7-45: Completion of the online changing with download 7-32

Fig. 7-46: Overview of online capable changes (selection) 7-33

Fig. 7-47: Pop-up menu of the ladder diagram editor 7-34

Fig. 7-48: Search in the ladder diagram editor 7-36

Fig. 7-49: Cross reference list with LD applications 7-36

Fig. 7-50: Print options in ladder diagrams 7-37

Fig. 8-1: Initial steps 8-2

Fig. 8-2: Steps 8-2

Fig. 8-3: _tSTEP structure 8-2

Fig. 8-4: Time monitoring of step sA1 8-2

Fig. 8-5: Transitions 8-3

Fig. 8-6: _tTRANSITION structure 8-3

Fig. 8-7: Advancing of the transition tA1 in the automatic jog mode is
disabled 8-3

Fig. 8-8: Oriented lines (jumps with destinations) 8-4

Fig. 8-9: Alternative SFCs 8-5

Fig. 8-10: Parallel SFCs 8-6

Fig. 8-11: Sequence of step / transition / step 8-7

Fig. 8-12: Opening of an alternative branch 8-7

Fig. 8-13: Opening of a simultaneous branch 8-8

Fig. 8-14: Closing of a simultaneous branch 8-8

Fig. 8-15: Entering the SFC name; continue with footer to enter the type
 8-9

Fig. 8-16: SFC table for the example "Scara" 8-10

Fig. 8-17: Declaration of the variables 8-10

Fig. 8-18: SFC list for the "Scara" example 8-11

Fig. 8-19: Empty SFC editor ready for entering the SFC 8-11

Fig. 8-20: Provided footer commands and their functions 8-11

Fig. 8-21: "Scara" SFC 8-12

Fig. 8-22: Initialization step with transition and return jump 8-13

Fig. 8-23: Main sequence without branches 8-14

Fig. 8-24: Termination of the branch 8-15

Fig. 8-25: Alternative operating modes 8-16

Fig. 8-26: Window to select the absolute address (here: in a detail of a
 transition) 8-17

Fig. 8-27: Steps of the Scara SFC in the SFC list 8-18

Fig. 8-28: Entering the SFC in a blank LD network. "4-SFC" 8-19

17-8 List of Figures WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 8-29: Calling up the SFC in the implementation of the FB in the LD
 8-19

Fig. 8-30: Calling up the SFC in the implementation of the FB in the IL
 8-19

Fig. 8-31: SFC mode control in the ladder diagram 8-20

Fig. 8-32: Insertion of steps and transitions beginning with the step 8-21

Fig. 8-33: Insertion of steps and transitions beginning with a transition
 8-22

Fig. 8-34: Opening and closing OR branches 8-23

Fig. 8-35: Opening and closing AND branches 8-24

Fig. 8-36: Cursor positions for opening branches with the - key 8-25

Fig. 8-37: Deletion of step and transition in pairs with the key 8-26

Fig. 8-38: Deletion of the last element of an open branch 8-26

Fig. 8-39: Cursor positions for deleting the branches below 8-27

Fig. 8-40: SFC list, "Setup" step and "No_Setup" transition deleted 8-28

Fig. 8-41: Faulty SFC 8-29

Fig. 8-42: Status display in the SFC editor 8-30

Fig. 8-43: SFC editor options 8-31

Fig. 8-44: Pop-up menu of the SFC editor 8-32

Fig. 8-45: Search in the SFC editor 8-33

Fig. 8-46: Excerpt from the cross reference list of a function block with
 SFC elements 8-34

Fig. 8-47: Comment on cross reference list (shortened) 8-34

Fig. 8-48: Options, sequential function chart (SFC) 8-35

Fig. 8-49: Options of the SFC element lists 8-35

Fig. 9-1: Possibilities in the action block editor 9-2

Fig. 9-2: Example for action times (time constants) 9-3

Fig. 9-3: Positions for placing the line before and behind 9-3

Fig. 9-4: Selection window, action qualifiers 9-4

Fig. 9-5: Selection window, time variables 9-5

Fig. 9-6: Selection window, actions / Boolean variables 9-6

Fig. 9-7: Window to select the absolute address 9-7

Fig. 9-8: Incorrect action blocks 9-8

Fig. 9-9: Positions for deleting action blocks and comments 9-8

Fig. 9-10: Warning displayed before deletion of an action block 9-9

Fig. 9-11: Actions in the SFC list 9-10

Fig. 9-12: Variables which are assigned to an action with _tACTION 9-11

Fig. 9-13: Step becomes active 9-12

Fig. 9-14: Consequences from postprocessing 9-13

Fig. 9-15: Action control according to EN 61131-3 9-14

Fig. 9-16: Time diagram for action qualifier "N" 9-15

Fig. 9-17: Time diagram for action qualifier "S" 9-16

Fig. 9-18: Time diagram for action qualifier "L" 9-17

Fig. 9-19: Time diagram for action qualifier "D" 9-18

Fig. 9-20: Time diagrams for action qualifiers "P", "P1" and "P0" 9-19

WinPCL 06VRS List of Figures 17-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 9-21: Time diagram for action qualifier "DS" 9-20

Fig. 9-22: Time diagram for action qualifier "SD" 9-21

Fig. 9-23: Time diagram for action qualifier "SL" 9-22

Fig. 9-24: System variables when action xxx is forced 9-24

Fig. 9-25: Assignment of system variables of action xxx 9-24

Fig. 9-26: "sfc1" with active step "s2A" and action blocks 9-25

Fig. 9-27: Change over to manual mode for "sfc1" 9-25

Fig. 9-28: Action "aName3" is forced 9-26

Fig. 9-29: Status display in the action block editor 9-27

Fig. 9-30: Action block editor options 9-28

Fig. 9-31: Pop-up menu of the action block editor 9-29

Fig. 9-32: Search function in the action block editor 9-30

Fig. 9-33: Cross reference list of a function block with SFC element
 (excerpt) 9-31

Fig. 9-34: Comment on cross reference list (shortened) 9-31

Fig. 9-35: Action block (AB) options 9-32

Fig. 10-1: Display table of the I/O editor 10-1

Fig. 10-2: Input mask of the I/O editor 10-3

Fig. 10-3: Check of I/O use 10-5

Fig. 10-4: Storage requirements of operating devices 10-6

Fig. 10-5: Devices in BT bus and addresses 10-6

Fig. 10-6: Addresses in the I/O editor 10-7

Fig. 10-7: Pop-up menu call in the I/O editor 10-9

Fig. 10-8: Removing gaps 10-9

Fig. 10-9: Steps performed when gaps are removed 10-9

Fig. 10-10: Inserting gaps 10-10

Fig. 10-11: Steps performed when gaps are inserted 10-10

Fig. 10-12: Reading the bus structure from the control 10-12

Fig. 10-13: Writing to the device (here lower branch of bus terminal)
 10-12

Fig. 10-14: Bus structure after 4 devices have been written to. 10-13

Fig. 10-15: Process data display 10-13

Fig. 10-16: Writing the CSV file 10-14

Fig. 10-17: Setting of CSV files 10-14

Fig. 10-18: CSV file in Excel format (reduced) 10-15

Fig. 10-19: Calling up the CMD import in the pop-up menu of the I/O
 editor 10-15

Fig. 10-20: Assignment mode: physical devices, logic devices 10-16

Fig. 10-21: Resource with I/O table with segment-oriented assignment
 10-16

Fig. 10-22: Resource with I/O table with device-oriented assignment
 10-17

Fig. 10-23: Module replacement 10-18

Fig. 10-24: "Extras / Options" for column width settings 10-19

Fig. 11-1: Numeric literals 11-2

17-10 List of Figures WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 11-2: Duration literal features 11-3

Fig. 11-3: Character string literal features 11-4

Fig. 11-4: Combination with ’$’ 11-4

Fig. 11-5: Elementary data types, value ranges and initial values 11-5

Fig. 11-6: Parts of the address of a variable 11-6

Fig. 11-7: Structure of a declaration illustrated by the "TOOL" structure
 11-8

Fig. 11-8: Declaration line (VAR…END_VAR range) 11-8

Fig. 11-9: IL lines for access to structures and structure elements 11-8

Fig. 11-10: Absolutely addressed structure (axis of type "iAXIS") 11-8

Fig. 11-11: Structure of a declaration illustrated by example of the
 "PALLET" elementary array 11-9

Fig. 11-12: Declaration line (VAR…END_VAR range) 11-9

Fig. 11-13: IL lines for accessing the array or an array element 11-9

Fig. 11-14: Declaration illustrated by example of the "T_Changer"
 structured array 11-10

Fig. 11-15: Declaration line (VAR…END_VAR range) 11-10

Fig. 11-16: IL lines for accessing the array or an array element 11-10

Fig. 11-17: Absolutely addressed array (retain flag) 11-10

Fig. 11-18: Declaration of a pointer, in the example "bitptr" 11-11

Fig. 11-19: "Address of" in the instruction list 11-11

Fig. 11-20: Example of access via pointer 11-12

Fig. 11-21: Structure of the "bytefeld" array and bits to be copied 11-12

Fig. 11-22: Declaration for the example 11-12

Fig. 11-23: Implementation for the example 11-13

Fig. 11-24: PROFIBUS status information: 11-17

Fig. 11-25: Slave status signals 11-18

Fig. 11-26: Slave status signal 11-19

Fig. 11-27: Variables which are assigned to an action with _tACTION
 11-20

Fig. 11-28: Variables for forcing action xxx 11-20

Fig. 11-29: Variables assigned to a transition with tTRANSITION 11-21

Fig. 11-30: Variables which are assigned to a step with _tSTEP 11-21

Fig. 11-31: _tSFC structure 11-22

Fig. 11-32: _tSFC structure 11-22

Fig. 11-33: Structure of a declaration illustrated by the "TOOL" structure
 11-23

Fig. 11-34: Structure of a declaration illustrated by example of the
 "PALLET" elementary array 11-23

Fig. 11-35: Declaration illustrated by example of the "T_Changer"
 structured array 11-24

Fig. 12-1: Function - general interface 12-1

Fig. 12-2: Standard function BYTE_TO_CHAR 12-3

Fig. 12-3: Value assignment BYTE_TO_CHAR 12-3

Fig. 12-4: Standard function BYTE_TO_GRAY 12-3

Fig. 12-5: Value assignment BYTE_TO_GRAY 12-4

WinPCL 06VRS List of Figures 17-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 12-6: Standard function BYTE_TO_INT 12-4

Fig. 12-7: Value assignment BYTE_TO_INT 12-4

Fig. 12-8: Standard function BYTE_TO_SINT 12-5

Fig. 12-9: Value assignment BYTE_TO_SINT 12-5

Fig. 12-10: Standard function BYTE_TO_USINT 12-5

Fig. 12-11: Value assignment BYTE_TO_USINT 12-5

Fig. 12-12: Standard function BYTE_BCD_TO_INT 12-6

Fig. 12-13: Value assignment BYTE_BCD_TO_INT 12-6

Fig. 12-14: Standard function CHAR_TO_BYTE 12-7

Fig. 12-15: Value assignment CHAR_TO_BYTE 12-7

Fig. 12-16: Standard function DINT_TO_DWORD 12-7

Fig. 12-17: Value assignment DINT_TO_DWORD 12-7

Fig. 12-18: Standard function DINT_TO_INT 12-8

Fig. 12-19: Value assignment DINT_TO_INT 12-8

Fig. 12-20: Standard function DINT_TO_UDINT 12-8

Fig. 12-21: Value assignment DINT_TO_UDINT 12-8

Fig. 12-22: Standard function DINT_TO_REAL 12-9

Fig. 12-23: Value assignment DINT_TO_REAL 12-9

Fig. 12-24: Standard function DINT_TO_TIME 12-9

Fig. 12-25: Value assignment DINT_TO_TIME 12-10

Fig. 12-26: Standard function DWORD_TO_REAL 12-10

Fig. 12-27: Value assignment DWORD_TO_DINT 12-10

Fig. 12-28: Standard function DWORD_TO_REAL 12-11

Fig. 12-29: Value assignment DWORD_TO_REAL 12-11

Fig. 12-30: Standard function GRAY_TO_BYTE 12-12

Fig. 12-31: Value assignment GRAY_TO_BYTE 12-12

Fig. 12-32: Standard function INT_TO_BCD_WORD 12-12

Fig. 12-33: Value assignment INT_TO_BCD_WORD 12-13

Fig. 12-34: Standard function INT_TO_BYTE 12-13

Fig. 12-35: Value assignment INT_BYTE 12-13

Fig. 12-36: Standard function INT_TO_DINT 12-14

Fig. 12-37: Value assignment INT_TO_DINT 12-14

Fig. 12-38: Standard function INT_TO_SINT 12-14

Fig. 12-39: Value assignment INT_TO_SINT 12-14

Fig. 12-40: Standard function INT_TO_STRING 12-15

Fig. 12-41: Value assignment INT_TO_STRING 12-15

Fig. 12-42: Standard function INT_TO_UINT 12-15

Fig. 12-43: Value assignment INT_TO_UINT 12-15

Fig. 12-44: Standard function INT_TO_USINT 12-16

Fig. 12-45: Value assignment INT_TO_USINT 12-16

Fig. 12-46: Standard function INT_TO_WORD 12-16

Fig. 12-47: Value assignment INT_TO_WORD 12-16

Fig. 12-48: Standard function REAL_TO_DINT 12-17

Fig. 12-49: Value assignment REAL_TO_DINT 12-17

17-12 List of Figures WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 12-50: Standard function REAL_TO_STRING 12-18

Fig. 12-51: Value assignment REAL_TO_STRING 12-18

Fig. 12-52: Standard function REAL_TO_DWORD 12-19

Fig. 12-53: Value assignment REAL_TO_DWORD 12-19

Fig. 12-54: Standard function SINT_TO_BYTE 12-20

Fig. 12-55: Value assignment SINT_TO_BYTE 12-20

Fig. 12-56: Standard function SINT_TO_INT 12-20

Fig. 12-57: Value assignment SINT_TO_INT 12-20

Fig. 12-58: Standard function STRING_TO_INT 12-21

Fig. 12-59: Value assignment STRING_TO_INT 12-21

Fig. 12-60: Standard function STRING_TO_REAL 12-21

Fig. 12-61: Value assignment STRING_TO_REAL 12-22

Fig. 12-62: Standard function UDINT_TO_DINT 12-22

Fig. 12-63: Value assignment UDINT_TO_DINT 12-22

Fig. 12-64: Standard function USINT_TO_BYTE 12-23

Fig. 12-65: Value assignment USINT_TO_BYTE 12-23

Fig. 12-66: Standard function USINT_TO_INT 12-23

Fig. 12-67: Value assignment USINT_TO_INT 12-23

Fig. 12-68: Standard function UINT_TO_INT 12-24

Fig. 12-69: Value assignment UINT_TO_INT 12-24

Fig. 12-70: Standard function UINT_TO_WORD 12-24

Fig. 12-71: Value assignment UINT_TO_WORD 12-24

Fig. 12-72: Standard function TIME_TO_DINT 12-25

Fig. 12-73: Value assignment TIME_TO_DINT 12-25

Fig. 12-74: Standard function WORD_BCD_TO_INT 12-25

Fig. 12-75: Value assignments WORD_BCD_TO_INT 12-26

Fig. 12-76: Standard function WORD_TO_INT 12-26

Fig. 12-77: Value assignments WORD_TO_INT 12-26

Fig. 12-78: Standard function WORD_TO_UINT 12-27

Fig. 12-79: Value assignments WORD_TO_UINT 12-27

Fig. 12-80: Standard function ABS_INT 12-28

Fig. 12-81: Value assignments ABS_INT 12-28

Fig. 12-82: Standard function SIGN_INT 12-28

Fig. 12-83: Value assignments SIGN_INT 12-28

Fig. 12-84: Standard function SQRT_REAL 12-29

Fig. 12-85: Value assignments SQRT_REAL 12-29

Fig. 12-86: Standard function LN_REAL 12-29

Fig. 12-87: Value assign-ments LN_RAL 12-29

Fig. 12-88: Standard function LOG_REAL 12-30

Fig. 12-89: Value assignments LOG_REAL 12-30

Fig. 12-90: Standard function EXP_REAL 12-30

Fig. 12-91: Value assignments EXP_REAL 12-30

Fig. 12-92: Standard function SIN-REAL 12-31

Fig. 12-93: Value assignments SIN_REAL 12-31

WinPCL 06VRS List of Figures 17-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 12-94: Standard function COS_REAL 12-31

Fig. 12-95: Value assignments COS_REAL 12-31

Fig. 12-96: Standard function TAN_REAL 12-32

Fig. 12-97: Value assignments TAN_REAL 12-32

Fig. 12-98: Standard function ASIN_REAL 12-32

Fig. 12-99: Value assignments ASIN_REAL 12-32

Fig. 12-100: Standard function ACOS_REAL 12-33

Fig. 12-101: Value assignments ACOS_REAL 12-33

Fig. 12-102: Standard function ATAN_REAL 12-33

Fig. 12-103: Value assignments ATAN_REAL 12-33

Fig. 12-104: Conversion of TIME unit day to INTEGER 12-34

Fig. 12-105: Conversion of TIME unit hour to INTEGER 12-34

Fig. 12-106: Conversion of TIME unit minute to INTEGER 12-34

Fig. 12-107: Conversion of TIME unit second to INTEGER 12-34

Fig. 12-108: Conversion of TIME unit millisecond to INTEGER 12-34

Fig. 12-109: Examples of time-to-integer conversions 12-35

Fig. 12-110: Compose time value 12-36

Fig. 12-111: Examples of integer-to-time conversions 12-37

Fig. 12-112: Shifting a byte to the left bit by bit 12-38

Fig. 12-113: Value assignment SHL_BYTE 12-38

Fig. 12-114: Shifting a word to the left bit by bit 12-39

Fig. 12-115: Shifting a double word to the left bit by bit 12-39

Fig. 12-116: Shifting a byte to the right bit by bit 12-39

Fig. 12-117: Value assignment SHL_BYTE 12-40

Fig. 12-118: Shifting a word to the right bit by bit 12-40

Fig. 12-119: Shifting a double word to the right bit by bit 12-40

Fig. 12-120: Rotating a byte to the left bit by bit 12-41

Fig. 12-121: Value assignment ROL_BYTE 12-41

Fig. 12-122: Rotating a word to the left bit by bit 12-41

Fig. 12-123: Rotating a double word to the left bit by bit 12-42

Fig. 12-124: Rotating a byte to the right bit by bit 12-42

Fig. 12-125: Value assignment ROR_BYTE 12-42

Fig. 12-126: Rotating a word to the right bit by bit 12-43

Fig. 12-127: Rotating a double word to the right bit by bit 12-43

Fig. 12-128: Standard function CONCAT_BYTE 12-43

Fig. 12-129: Value assignment CONCAT_BYTE 12-43

Fig. 12-130: Standard function CONCAT_WORD 12-44

Fig. 12-131: Value assignment CONCAT_WORD 12-44

Fig. 12-132: Standard function HIGH_BYTE 12-44

Fig. 12-133: Value assignment HIGH_BYTE 12-44

Fig. 12-134: Standard function LOW_BYTE 12-44

Fig. 12-135: Value assignment LOW_BYTE 12-44

Fig. 12-136: Standard function HIGH_WORD 12-45

Fig. 12-137: Value assignment HIGH_WORD 12-45

17-14 List of Figures WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 12-138: Standard function LOW_WORD 12-45

Fig. 12-139: Value assignment LOW_WORD 12-45

Fig. 12-140: Standard function LEN 12-46

Fig. 12-141: Value assignment LEN 12-46

Fig. 12-142: Standard function LEFT 12-47

Fig. 12-143: Value assignment LEFT 12-47

Fig. 12-144: Declaration of string_2 12-47

Fig. 12-145: Value assignment for results character string limited in length
 12-47

Fig. 12-146: Standard function RIGHT 12-48

Fig. 12-147: Value assignment RIGHT 12-48

Fig. 12-148: Declaration of string_2 12-48

Fig. 12-149: Value assignment for results character string limited in length
 12-48

Fig. 12-150: Standard function MID 12-49

Fig. 12-151: Value assignment MID 12-49

Fig. 12-152: Declaration of string_2 12-49

Fig. 12-153: Value assignment for results character string limited in length
 12-49

Fig. 12-154: Standard function CONCAT_S 12-50

Fig. 12-155: Value assignment CONCAT_S 12-50

Fig. 12-156: Declaration of string_3 12-50

Fig. 12-157: Value assignment for results character string limited in length
 12-50

Fig. 12-158: Standard function INSERT 12-51

Fig. 12-159: Value assignment INSERT 12-51

Fig. 12-160: Declaration of string_3 12-51

Fig. 12-161: Value assignment for results character string limited in length
 12-51

Fig. 12-162: Standard function DELETE 12-52

Fig. 12-163: Value assignment DELETE 12-52

Fig. 12-164: Declaration of string_2 12-52

Fig. 12-165: Value assignment for results character string limited in length
 12-52

Fig. 12-166: Standard function REPLACE 12-53

Fig. 12-167: Value assignment REPLACE 12-53

Fig. 12-168: Standard function FIND 12-54

Fig. 12-169: Value assignment: 12-54

Fig. 12-170: Address assignment of the registers 12-55

Fig. 12-171: Setting the measuring ranges 12-55

Fig. 12-172: Overview of the settable measuring ranges 12-55

Fig. 12-173: Firmware function voltage measurement VLT_MEAS 12-56

Fig. 12-174: Resolution and measured value unit in the measuring ranges
 12-56

Fig. 12-175: Firmware function current measurement AMP_MEAS 12-57

Fig. 12-176: Resolution and measured value unit 12-57

WinPCL 06VRS List of Figures 17-15

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 12-177: Firmware function resistance measurement RES_MEAS
 12-57

Fig. 12-178: Resolution and measured value unit in the measuring ranges
 12-57

Fig. 12-179: Firmware function temperature measurement TMP1MEAS
 12-58

Fig. 12-180: Resolution and measured value unit in the measuring ranges
 12-58

Fig. 12-181: Output voltage and output current - rule for calculation 12-59

Fig. 12-182: Firmware function voltage and current output AN_OUT 12-59

Fig. 12-183: Declaration part for the analog module example 12-60

Fig. 12-184: Ladder diagram for the analog module example 12-61

Fig. 12-185: PROFIBUS DP, function DPM_START 12-62

Fig. 12-186: PROFIBUS DP, function DPM_STOP 12-63

Fig. 12-187: Declaration part for the program example 12-63

Fig. 12-188: Implementation part for the program example 12-64

Fig. 12-189: PROFIBUS DP, function DP_EXCHG 12-64

Fig. 12-190: BT bus: Function BT_STATE 12-65

Fig. 12-191: BT bus: Function START 12-66

Fig. 12-192: BT bus: Function STOP 12-66

Fig. 12-193: ASI bus: Function START 12-67

Fig. 12-194: ASIM bus: Function STOP 12-68

Fig. 12-195: ASIM bus: Function RESET 12-68

Fig. 12-196: ASIM-Bus: Function block ASIM_SLDIAG 12-69

Fig. 12-197: Data type "Diagnostic information of a SLAVE" 12-70

Fig. 12-198: ASIM_ bus: Functions ASIM_STATE_CH1 /
 ASIM_STATE_CH2 12-71

Fig. 12-199: Error code at output "ERROR_CODE": Initialization error
 12-73

Fig. 12-200: Error codes at output "ERROR_CODE": Runtime error
 12-74

Fig. 12-201: INTERBUS – status display, equal for IB_STATE2 12-75

Fig. 12-202: Declaration part of the function SELECT_INT 12-77

Fig. 12-203: Instruction list of the function SELECT_INT 12-77

Fig. 12-204: Ladder diagram of the function SELECT_INT 12-78

Fig. 13-1: Function blocks, general interface 13-1

Fig. 13-2: Standard function block SR 13-3

Fig. 13-3: Circuit diagram and replacement circuit SR 13-3

Fig. 13-4: Standard function block RS 13-3

Fig. 13-5: Circuit diagram and replacement circuit RS 13-3

Fig. 13-6: Standard function block TOGGLE 13-4

Fig. 13-7: Pulse diagram TOGGLE 13-4

Fig. 13-8: TOGGLE application 13-4

Fig. 13-9: Standard function block R_TRIG 13-5

Fig. 13-10: Internal realization and pulse diagram 13-5

Fig. 13-11: Standard function block F_TRIG 13-5

17-16 List of Figures WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 13-12: Internal realization and pulse diagram 13-6

Fig. 13-13: Standard function block BOOL_BYTE 13-6

Fig. 13-14: Value assignment BOOL_BYTE 13-6

Fig. 13-15: Standard function block BOOL:_WORD 13-7

Fig. 13-16: Standard function block BOOL_DWORD 13-8

Fig. 13-17: Value assignment BYTE_BOOL 13-9

Fig. 13-18: Value assignment BYTE_BOOL 13-9

Fig. 13-19: Standard function block WORD_BOOL 13-10

Fig. 13-20: Standard function block DW_BOOL 13-11

Fig. 13-21: Counter CTUD_USINT_INDR (DOS-PCL-compatible) 13-12

Fig. 13-22: Counter CTUD_UINT_INDR (DOS-PCL-compatible) 13-13

Fig. 13-23: Counter CTUD_INT_INDR (DOS-PCL-compatible) 13-14

Fig. 13-24: Counter CTUD_USINT (EN-61131-3-compatible) 13-15

Fig. 13-25: Counter CTUD_UINT (EN-61131-3-compatible) 13-16

Fig. 13-26: Counter CTUD_INT (EN-61131-3-compatible) 13-17

Fig. 13-27: Standard function block TP 13-18

Fig. 13-28: Diagram of time stage TP (pulse) 13-18

Fig. 13-29: Standard function block TON 13-19

Fig. 13-30: Diagram of time stage TON (with on-delay) 13-19

Fig. 13-31: Standard function block TOFF 13-20

Fig. 13-32: Diagram of time stage TOFF (with off delay) 13-20

Fig. 13-33: Standard function block FLASH 13-21

Fig. 13-34: FLASH application 13-21

Fig. 13-35: Time course relating to the example above 13-21

Fig. 13-36: Reading the date DATE_RD 13-22

Fig. 13-37: Time course when reading the date DATE_RD 13-23

Fig. 13-38: Reading the time TOD_RD 13-23

Fig. 13-39: Time course for reading the time TOD_RD 13-24

Fig. 13-40: Current bus configuration in IBS CMD G4 (example) 13-27

Fig. 13-41: Process data, addresses assigned automatically in the
 example 13-28

Fig. 13-42: Addresses of the INTERBUS standard register (example)
 13-28

Fig. 13-43: IO editor of the resource with bus devices and registers 13-29

Fig. 13-44: Declaration of the registers at resource level and enable 13-29

Fig. 13-45: Rexroth function block CLR_DIAG 13-30

Fig. 13-46: Rexroth function block SEG_OFF 13-31

Fig. 13-47: Rexroth function block SEG_ON 13-32

Fig. 13-48: Rexroth function block 13-33

Fig. 13-49: Rexroth function block START_D 13-34

Fig. 13-50: Structure of the diagnosis status register 13-35

Fig. 13-51: Resource complete for INTERBUS example 13-36

Fig. 13-52: Declaration for the program "interbus: IBS_CMD_PR" 13-37

Fig. 13-53: Implementation for the program "interbus: IBS_CMD_PR"
 13-38

WinPCL 06VRS List of Figures 17-17

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 13-54: Function block PCP_INITIATE 13-40

Fig. 13-55: Supported services 13-42

Fig. 13-56: Function block PCP_READ 13-43

Fig. 13-57: Function block PCP_WRITE 13-44

Fig. 13-58: Function block PCP_GET_OD 13-46

Fig. 13-59: Function block PCP_IDENTIFY 13-48

Fig. 13-60: Function block PCP_ABORT 13-50

Fig. 13-61: Firmware function block DP_STATE 13-57

Fig. 13-62: Firmware function block DPM_SLDIAG 13-58

Fig. 13-63: Declaration part for the program example 13-59

Fig. 13-64: Implementation part for the program example 13-60

Fig. 13-65: ASIM-Bus: Function block ASIM_SLDIAG 13-61

Fig. 13-66: Data type "Diagnostic information of a SLAVE" 13-61

Fig. 13-67: Firmware function block OPEN_COM 13-63

Fig. 13-68: Firmware function block CLOS_COM 13-63

Fig. 13-69: Firmware function block WR_BYTE 13-64

Fig. 13-70: Firmware function block RD_BYTE 13-65

Fig. 13-71: Firmware function block CTRL_COM 13-66

Fig. 13-72: Firmware function block WR_STR 13-67

Fig. 13-73: Firmware function block RD_STR 13-68

Fig. 13-74: Firmware function block CLR_COM 13-69

Fig. 13-75: Definition of the serial interfaces in the structure "COM" 13-70

Fig. 13-76: Setting the serial interfaces 13-71

Fig. 13-77: Opening the serial interfaces 13-71

Fig. 13-78: Writing to serial interfaces 13-72

Fig. 13-79: Clearing the transmitter and receiver buffers of the serial
 interfaces 13-72

Fig. 13-80: Reading a serial interface 13-73

Fig. 13-81: Closing the serial interfaces 13-73

Fig. 13-82: Status test of a serial interface 13-74

Fig. 13-83: Status inquiry for the above example 13-75

Fig. 13-84: Firmware function block GUI_SK16 13-76

Fig. 13-85: IO table with access to machine function keys 13-77

Fig. 13-86: Declaration of the machine function keys in a program 13-77

Fig. 13-87: GUI_SK16 - use in the implementation 13-78

Fig. 13-88: Interfaces of the blocks 13-79

Fig. 13-89: Input / output variables BTXX and BTXX_2 13-80

Fig. 13-90: Survey of firmware function blocks to extend the functional
 range of an ISP in relation to a Motion Control 13-80

Fig. 13-91: FW function block CALC_LINEAR_Y 13-81

Fig. 13-92: Input / output variables CALC_LINEAR_Y 13-81

Fig. 13-93: Structure of the value table 13-82

Fig. 13-94: Error codes CALC_LINEAR_Y 13-83

Fig. 13-95: Value table for application example 13-83

17-18 List of Figures WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 13-96: Diagram for application example 13-83

Fig. 13-97: FW function block PID_CONTROL 13-84

Fig. 13-98: Input / output variables PID_CONTROL 13-85

Fig. 13-99: Block diagram ’Control loop’ 13-85

Fig. 13-100: Analog PID control 13-85

Fig. 13-101: Digital PID control 13-85

Fig. 13-102: Basis to transform into recursive form 13-85

Fig. 13-103: Digital PID control - Recursive form (parallel form) 13-86

Fig. 13-104: Digital PID control – General coefficient 13-86

Fig. 13-105: Initialization of the internal controlled variables 13-86

Fig. 13-106: Possible control types PID_CONTROL 13-86

Fig. 13-107: Error codes PID_CONTROL 13-87

Fig. 13-108: FW function block AVERAGE_REAL 13-88

Fig. 13-109: Input / output variables AVERAGE_REAL 13-88

Fig. 13-110: FIFO register AVERAGE_REAL 13-88

Fig. 13-111: Error codes AVERAGE_REAL 13-89

Fig. 13-112: FW function block AVERAGE_DINT 13-89

Fig. 13-113: Input / output variable AVERAGE_DINT 13-89

Fig. 13-114: FIFO register AVERAGE_DINT 13-90

Fig. 13-115: Error codes AVERAGE_DINT 13-90

Fig. 13-116: FW function block PT2_FILTER 13-91

Fig. 13-117: Input / output variables PT2_FILTER 13-91

Fig. 13-118: Shannon's theorem 13-92

Fig. 13-119: Transfer function of a PT2 element 13-92

Fig. 13-120: Error codes PT2_FILTER 13-92

Fig. 13-121: Coupling with other control components 13-95

Fig. 14-1: Program, general interface 14-1

Fig. 14-2: Declaration part of a program 14-2

Fig. 14-3: Permitted absolutely addressed variables 14-2

Fig. 14-4: Permitted absolutely addressed variables 14-4

Fig. 14-5: Declaration part of a resource 14-4

Fig. 14-6: Possible tasks of a resource 14-5

Fig. 14-7: Assignment of program instances to tasks 14-6

Fig. 14-8: Task, shown as graphical diagram 14-6

Fig. 14-9: Task declaration in the declaration part of the resource 14-7

Fig. 14-10: Assignment of program instances to tasks 14-7

Fig. 14-11: Time schedule 14-8

Fig. 14-12: Time table for program execution 14-9

Fig. 15-1: Declaration of the variables 15-1

Fig. 15-2: Implementation 15-1

Fig. 15-3: S#ErrorFlg, S#ErrorNr and S#ErrorTyp 15-1

Fig. 15-4: Structure of the program "Test" 15-2

Fig. 15-5: Correct run of the program 15-2

Fig. 15-6: Error in fn FN_B without any reaction 15-3

WinPCL 06VRS List of Figures 17-19

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Fig. 15-7: Error in fn FN_B does not exist any longer, no user reaction
 15-3

Fig. 15-8: Error evaluation in FN FN_A, (section 2a), reset S#ErrorFlg
 15-4

Fig. 15-9: Errors in functions and function blocks 15-13

Fig. 15-10: Errors in operation and IL instructions 15-15

Fig. 15-11: Errors with REAL-Operations in Borderline Cases 15-17

Fig. 15-12: Sequential function chart errors (SFC) 15-18

17-20 List of Figures WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL 06VRS Index 18-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

18 Index

%
%I 11-6
%M 11-6
%Q 11-6
%R 11-6

?
? Help 4-102

^
^ 11-11

1
-100xx - Errors in operations and IL instructions 15-14
-106 - OPEN_COM 13-63
-107 - CLOS_COM 13-63
-110 - WR_BYTE 13-64
-111 - RD_BYTE 13-65
-112 - CTRL_COM 13-66
-11xxx - Sequential function chart errors (SFC) 15-17
-138 - CHAR_TO_BYTE 12-7
-139 - BYTE_TO_CHAR 12-3
-140 - INT_TO_STRING 12-15
-141 - STRING_TO_INT 12-21
-142 - LEN 12-46
-143 - LEFT 12-47
-144 - RIGHT 12-48
-145 - MID 12-49
-146 - CONCAT_S 12-50
-147 - INSERT 12-51
-148 - DELETE 12-52
-149 - REPLACE 12-53
-150 - FIND 12-54
-152 - DINT_TO_DWORD 12-7
-153 - DWORD_TO_DINT 12-10
-154 - DINT_TO_INT 12-8
-155 - INT_TO_DINT 12-14
-156 - DINT_TO_TIME 12-9
-157 - TIME_TO_DINT 12-25
-159 - SHL_DWORD 12-38
-160 - SHR_DWORD 12-39
-161 - ROL_DWORD 12-41
-162 - ROR_DWORD 12-42
-165 - DINT_TO_REAL 12-9
-166 - REAL_TO_DINT 12-17
-167 - STRING_TO_REAL 12-21
-168 - REAL_TO_STRING 12-18
-171 - DINT_TO_UDINT 12-8
-172 - UDINT_TO_DINT 12-22
-173 - DATE_RD 13-22
-174 - TOD_RD 13-23
-195 - BOOL_BYTE 13-6
-196 - BYTE_BOOL 13-9
-197 - BOOL_WORD 13-7
-198 - WORD_BOOL 13-10
-199 - BOOL_DW 13-8

18-2 Index WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

2
-200 - DW_BOOL 13-11
-201 - FLASH 13-21
-202 - TOGGLE 13-4
-203 - RD_STR 13-68
-204 - WR_STR 13-67
-205 - TIME_DAY 12-34
-206 - TIME_HOUR 12-34
-207 - TIME_MIN 12-34
-208 - TIME_SEC 12-34
-209 - TIME_MS 12-34
-210 - MAKETIME 12-36
-217 - BT_START 12-66
-218 - BT_STOP 12-66
-219 - BT_STATE 12-65
-225 - GUI_SK16 13-76
-227 - CLR_COM 13-69
-228 - SINT_TO_INT 12-20
-229 - INT_TO_SINT 12-14
-230 - SINT_TO_BYTE 12-20
-231 - BYTE_TO_SINT 12-5
-232 - UINT_TO_INT 12-24
-233 - INT_TO_UINT 12-15
-234 - UINT_TO_WORD 12-24
-235 - WORD_TO_UINT 12-27
-236 - REAL_TO_DWORD 12-19
-237 - DWORD_TO_REAL 12-11
-238 - BTXX 13-78
-239 - DPM_SLDIAG 13-58
-240 - VLT_MEAS 12-56
-242 - DPM_STATE 13-57
-243 - DPM_STOP 12-63
-244 - DPM_START 12-62
-245 - DPM_EXCHG 12-64
-246 - AMP_MEAS 12-56
-247 - RES_MEAS 12-57
-248 - TMP1MEAS 12-58
-249 - AN_OUT 12-59
-254 - BTXX_2 13-78
-270 - SQRT_REAL 12-29
-271 - LN_REAL 12-29
-272 - LOG_REAL 12-30
-273 - EXP_REAL 12-30
-274 - SIN_REAL 12-31
-275 - COS_REAL 12-31
-276 - TAN_REAL 12-32
-277 - ASIN_REAL 12-32
-278 - ACOS_REAL 12-33
-279 - ATAN_REAL 12-33

3
-303 - CALC_LINEAR_Y 13-81
-304 - PID_CONTROL 13-84
-305 - AVERAGE_REAL 13-88
-306 - AVERAGE_DINT 13-89
-310 - PT2_FILTER 13-91
-320 - CTUD_INT 13-17
-321 - CTUD_UINT 13-16
-322 - CTUD_USINT 13-15
-324 - PCP_INITIATE 13-40
-325 - PCP_ABORT 13-50
-326 - PCP_READ 13-43
-327 - PCP_WRITE 13-44
-328 - PCP_IDENTIFY 13-48
-329 - PCP_GET_OD 13-46
-330 - IB_STATE 12-74
-331 - ASIM_START 12-67

WinPCL 06VRS Index 18-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

-332 - ASIM_STOP 12-68
-333 - ASIM_STATE_CH1 12-71
-334 - ASIM_RESET 12-68
-335 - ASIM_STATE_CH2 12-71
-336 - ASIM_SLDIAG 12-69, 13-60

4
-49 - GRAY_TO_BYTE 12-12

5
-50 - BYTE_TO_GRAY 12-3
-51 - BYTE_BCD_TO_INT 12-6
-52 - WORD_BCD_TO_INT 12-25
-53 - BYTE_TO_INT 12-4
-54 - WORD_TO_INT 12-26
-55 - INT_TO_BYTE 12-13
-56 - INT_TO_WORD 12-16
-57 - INT_TO_BCD_WORD 12-12
-58 - USINT_TO_INT 12-23
-59 - INT_TO_USINT 12-16

6
-60 - USINT_TO_BYTE 12-23
-61 - BYTE_TO_USINT 12-5
-62 - CONCAT_BYTE 12-43
-63 - CONCAT_WORD 12-44
-64 - HIGH_BYTE 12-44
-65 - LOW_BYTE 12-44
-66 - HIGH_WORD 12-45
-67 - LOW_WORD 12-45
-68 - SIGN_INT 12-28
-69 - ABS_INT 12-28

7
-70 - SHL_BYTE 12-38
-71 - SHL_WORD 12-38
-72 - SHR_BYTE 12-39
-73 - SHR_WORD 12-39
-74 - ROL_BYTE 12-41
-75 - ROL_WORD 12-41
-76 - ROR_BYTE 12-42
-77 - ROR_WORD 12-42
-78 - SR flip-flop 13-3
-79 - RS flip-flop 13-3

8
-80 - R_TRIG 13-5
-81 - F_TRIG 13-5
-82 - CTUD_USINT_INDR 13-12
-83 - CTUD_UINT_INDR 13-13
-84 - CTUD_INT_INDR 13-14
-85 - TP - Timer function block, single pulse 13-18
-86 - TON - Timer function block, on-delay timing 13-19
-87 - TOFF - Timer function block, off-delay timing 13-20

18-4 Index WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

A
Abort_Indication for PCP blocks 13-51
Absolutely addressed variables in the program 14-2
Absolutely addressed variables in the resource 14-4
Action 9-1
Action block editing 9-3
Action block, selection window, action qualifiers 9-4
Action block, selection window, actions / Boolean variables 9-6
Action block, Selection window, Time Variables 9-5
Action blocks and their operating principle 9-1
Action list 8-9
Action name 9-2
Action qualifier 9-2
Action qualifiers and their execution 9-15
Action time 9-2
Actions with function blocks which contain SFC structures 9-23
Activities in CMD as an export requirement for IBS configuration data 10-12
ADD 6-33
ADD(, IL 6-32
Address assignment of the registers - analog module 12-55
Address of 11-11
Alternative SFCs 8-5
Alt-key combinations 4-115
Analog module RMC12.2-2E-1A, functions 12-54
AND 6-26
AND(, IL 6-26
AND<, IL 6-26
AND>, IL 6-26
ANDN(, IL 6-26
ANDN, IL 6-26
Appropriate use

Introduction 2-1
Uses 2-2

Archive xx 4-22
Areas in the declaration editor (function block) 5-21
Areas in the declaration editor (function) 5-23
Areas in the declaration editor (program) 5-18
Areas in the declaration editor (resource) 5-15
Arithmetic instructions, IL 6-32
ARRAYs 11-9
ASI bus, error messages 12-72
ASIM, data types 11-19
AS-Interface 4-92
ASISLDIAG 11-19, 12-70, 13-61

B
Based number 11-2
Basic sequential function chart elements 8-1
Bit string functions 12-38
Block commands, declaration editor 5-12
Block commands, IL editor 6-20
Block commands, ladder diagram editor 7-35
BOOL 11-5
Boolean

Literals 11-2
BT bus 10-6
BYTE 11-5

WinPCL 06VRS Index 18-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

C
CAL, IL 6-29
CALC, IL 6-29
CALCN, IL 6-29
Cascade windows 4-99
Change password for *** 4-89
Changes which are not online capable, IL editor 6-15
CHAR 11-5
character code 11-1
Character set 11-1
Character String

Literals 11-4
Character string functions 12-46
Check for use of the I/O areas in resource and programs 10-5
Close 4-99
Close all 4-99
CLR_DIAG 13-30
CMD export requirements for IBS configuration data 10-11
Cold start 14-12
Collecting / splitting bit strings 13-6
COM 11-14
Comment 11-1
Comment export 4-28
Compiler 4-47
Complete compilation starting from focused file xx 4-47
Complete compilation starting from the current resource xx 4-47
Compound archive of xx 4-23
Compound archive starting from the current resource 4-24
Connection line: 9-2
Copy <Ctrl>+<C> 4-30
Cross reference help 4-40
Cross reference help pop-up menu <Shift>+<F10> 4-42
Cross reference list (and cross reference help) 4-37
Cross reference list pop-up menu <Shift>+<F10> 4-37
Cross reference list, action block editor 9-31
Cross reference list, declaration editor 5-14
Cross reference list, IL editor 6-21
Cross reference list, ladder diagram editor 7-36
Cross reference list, sequential function chart 8-34
Cross reference on PR/FB/FN level 4-39
Cross reference on resource level 4-38
CSV file, data format 10-15
Cut <Ctrl>+<X> 4-29
Cyclic task 14-7

D
D, action qualifier 9-18
Data types and initial values 11-4
Data types of sequential function chart, _tACTION 11-20
Data types of sequential function chart, _tSFC 11-22
Data types of sequential function chart, _tSFCINTERN 11-22
Data types of sequential function chart, _tSTEP 11-21
Data types of sequential function chart, _tTRANSITION 11-21
Data types PROFIBUS DP, DPSLDIAG 11-18
Data types PROFIBUS, DP DPGLOBAL 11-17
Data, absolute data 14-10, 14-11
Data, absolute global data 14-11
Data, cold start 14-12
Data, compiler-assigned global data 14-10
Data, compiler-assigned local data 14-9
Data, global data 14-10
Data, initialization of absolute data 14-13
Data, initialization of global data 14-13
Data, local data 14-9
Data, management of global and local data 14-9
Data, start of the PLC 14-12
Data, warm start 14-12

18-6 Index WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Decimal Number (Decimal Literal) 11-2
Declaration editor options 5-10
Declaration footer command 5-4
Declaration footer command, arrays 5-28
Declaration footer command, structure 5-25
Declaration footer commands, function block level 5-22
Declaration footer commands, function level 5-24
Declaration footer commands, program level 5-20
Declaration footer commands, resource level 5-17
Declaration of ARRAYs 5-27
Declaration of structures (STRUCT) 5-25
Declaration, function 5-23
Declaration, function block 5-21
Declaration, program 5-18
Declaration, resource 5-15
Declaration, selection window, arrays 5-5
Declaration, selection window, elementary data types 5-4
Declaration, selection window, function block types 5-7
Declaration, selection window, structures 5-6
Declaration, selection window. programs 5-8
Delete 4-30
Deletion in the ladder diagram 7-11
Deletion of an action block 9-8
Deletion of steps, transitions and branches 8-25
Delimiter

Comments 11-1
Time literals 11-3

Detail level of the action block editor 9-10
DeviceNet 4-92
Diagnosis display of I/O addresses in PRs and FBs 4-84
Diagnosis module assignment 4-75
DINT 11-5
Display of variable values 4-51
DIV 6-36
DIV(, IL 6-32
Documentation, action block editor 9-32
Documentation, declaration 5-14
Documentation, IL editor 6-22
Documentation, ladder diagram editor 7-37
Documentation, sequential function chart 8-35
Download xx in control yy <Ctrl>+<F9> 4-50
DS, action qualifier 9-20
DWORD 11-5

E
Edge evaluation and online changes - IL 6-17
Edge evaluation and online changes, LD 7-21
Edge evaluation for rising and falling edges 13-5
Edit 4-29
Edit - pictograms 4-118
Edit strategy - variations in font color of cross references 4-43
Editing features- Varying font color in the declaration editor 5-3
Editing features, varying color in the action block editor 9-8
Editing features, varying color in the IL editor 6-9
Editing features, varying color in the ladder diagram editor 7-12
Editing ladder diagrams 7-2
Elementary data types, value ranges and initial values 11-5
Elements of a transition, _tTRANSITION 8-3
ENABLE, Tasks 14-5
Entering an action block, placing it behind and before 9-3
Entering SFCs in the SFC editor 8-9
Entry of a simple ladder diagram 7-14
Entry of the sequence for execution in View / Implementation 8-19
EQ 6-41
EQ(, IL 6-38
EQ, IL 6-38
Error handling of function blocks for serial interfaces 13-69
Error message, service-specific, for PCP blocks 13-55

WinPCL 06VRS Index 18-7

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Error messages of the communication with PCP function blocks (general
information) 13-51
Errors in the ASI bus 12-72
Event display 4-72
Excerpt from the description of the standard registers 13-34
Execution by Action_Control 9-14
Execution rules of the sequential function chart 8-7
Exit 4-28
Export 4-27
Export of files and compound files 4-27
Extensions in the ladder diagram function blocks 7-27
Extensions in the ladder diagram Operators 7-23
Extensions in the ladder diagram, additional symbols 7-18
Extensions in the ladder diagram, functions 7-25

F
F keys and their Alt / Ctrl / Shift combinations 4-114
Fieldbus Configuration 4-89
File 4-1
File-file comparison 4-93
File-file comparison, comparator window 4-97
File-file comparison, option

Display only identic names 4-93
Display only identic names is deactivated 4-94

File-file comparison, selection of files of the second variant 4-95
Find <Ctr>+<F> 4-30
Find next <Ctrl>+<R> 4-31
Finding and deleting unused declarations. declaration editor 5-13
Firmware data types 11-14
Firmware function blocks 13-25
Firmware functions 12-54
Flip-flops 13-3
Focused file xx 4-47
Footer commands, ladder diagram 7-2
Force <Shift>+<F8> 4-56
Forcing of actions with system support 9-24
Free file selection 4-25
Function blocks for date and time 13-22
Function blocks for the HMI interface (GUI_SK16) 13-75
Function blocks, general information 13-1
Functions for time-to-integer conversion 12-34
Functions for type and code conversion 12-3
Functions, general information 12-1

G
GE 6-40
GE(, IL 6-38
GE, IL 6-38
General method of action execution 9-12
General notes on the declaration editors 5-1
General notes on the I/O editor 10-1
General notes on the instruction list editor 6-1
General notes on the ladder diagram editor 7-1
GT 6-39
GT(, IL 6-38

H
Help on a particular error <Ctrl>+<F1> 4-106
Help on cursor position <F1> 4-103
Help on declaration <Shift>+<F1> 4-107
Help topics (contents & index) 4-104
Hilscher (SyCon) 4-92
Horizontal connection lines 7-1

18-8 Index WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

I
I/O table 10-1
IB_STATE 12-74
Identifier 11-1
IL, selection window, absolute addressed variables 6-8, 7-10, 8-17, 9-7
IL, selection window, functions 6-3
IL, selection window, instances of function blocks 6-4
IL, selection window, labels 6-6
IL, selection window, operators 6-2
IL, selection window, SFCs 6-5
IL, selection window, variables 6-7
Import 4-27
Import <Ctr>+<F2> 4-45
Import rules for functions 12-76
Import rules, function blocks 13-93
Importing the CSV file in the I/O editor 10-15
Inappropriate use 2-2

Consequences, Discharge of liability 2-1
Info 4-106
Info about WinPCL 4-105
Initial step 8-1
Input

location prefix 11-6
Input mask in the I/O editor, Structure 10-3
Insertion of steps and transitions 8-21
Insertion of steps, transitions, branches and junctions 8-21
Instructions of the IL - table overview 6-23
INT 11-5
Integer

Literal 11-2
INTEGER-to-TIME conversion 12-36
INTERBUS 4-91
INTERBUS, function blocks 13-27
Internals 4-104
INTERVAL, Tasks 14-5
IO simulation permitted 4-8

J
JMP, IL 6-29
JMPC, IL 6-29
JMPCN, IL 6-29
Jumps, calls, returns (conditional and unconditional), IL 6-29

K
Keys and key combinations 4-113
Keyword 11-1

Time literals 11-3

L
L, action qualifier 9-17
Label, IL 6-1
Label, ladder diagram 7-2
Language.ini 4-108
LD, selection window, functions 7-5
LD, selection window, instances of function blocks 7-6
LD, selection window, label 7-7
LD, selection window, operators 7-4
LD, selection window, SFCs 7-8
LD, selection window, variables 7-9
LD<, IL 6-24
LD>, IL 6-24
LDN, IL 6-24
LE 6-44
Limitation of the Declaration of Function Blocks in the Retain Area 13-94
LINT 11-5
Literal 11-2

WinPCL 06VRS Index 18-9

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Load archive 4-26
Loading and storing operations 6-24
Logic address assignment by example of a BT bus 10-6
Logic instructions, IL 6-26
Logout 4-88
LREAL 11-5
LT 6-45
LWORD 11-5

M
Memory requirements for compound 4-71
Miniature control panel, function block for data exchange with the PLC 13-78
Miniature control panels 4-74
Minimize all windows 4-101
MOD 6-37
MOD(, IL 6-32
Module assignment (multiple use of POUs) 4-85
Module assignment (syntax) 4-86
MotionControl extension of the ISP 13-80
MUL 6-35
MUL(, IL 6-32
Multiple request of conditions in transitions 8-4
Multiple use of actions 9-9

N
N, action qualifier 9-15
NE 6-42
NE(, IL 6-38
NE, IL 6-38
Necessary files starting for focused file xx 4-47
Necessary files starting from the current resource xx 4-47
Network, ladder diagram 7-2
New 4-2
NIL pointer 11-11
Numeric functions 12-28
Numeric Literals 11-2

O
Online - pictograms 4-118
Online editing in the ladder diagram 7-31
Online editing, IL editor 6-12
Open 4-3
Opening an SFC 8-9
Opening and closing AND branches 8-24
Opening and closing OR branches 8-23
Opening branches 8-25
Operand, IL 6-1
Operation, IL 6-1
Options - cross reference list (and cross reference help) 4-44
Options in the I/O editor 10-19
Options of the sequential function chart 8-31
Options, action block editor 9-28
Options, IL editor 6-11
Options, ladder diagram editor 7-29
OR 6-27
OR(,IL 6-27
OR<, IL 6-27
OR>, IL 6-27
Oriented lines in an SFCuence 8-4
ORN(,IL 6-27
ORN, IL 6-27
Other keys and key combinations 5-17, 5-20, 5-22, 5-24, 5-25, 5-28
Output

location prefix 11-6
Output of ProVi messages 4-79
Output of SFC diagnosis messages 4-82

18-10 Index WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

P
P#-operator 11-11
P, action qualifier 9-19
P0, action qualifier 9-19
P1, action qualifier 9-19
Parallel SFCs 8-6
Parentheses 11-1
Password 4-88
Password - file-related 4-7
PCP function blocks for the parameter channel of the INTERBUS 13-38
Phoenix Contact (CMD) 4-91
Pictograms 4-118
Pictograms - operating modes 4-118
Pictograms - Program organization units and data types 4-120
Pictograms - properties 4-119
PLC information 4-69
Pointer 11-11
Pointer points to 11-12
Pop-up menu - ARRAY / editor <Shift>+<F10> 5-28
Pop-up menu, action block editor <Shift>+<F10> 9-29
Pop-up menu, declaration editor <Shift>+<F10> 5-11
Pop-up menu, I/O editor <Shift>+<F10> 10-20
Pop-up menu, IL editor <Shift>+<F10> 6-19
Pop-up menu, LD editor <Shift>+<F10> 7-34
Pop-up menu, sequential function chart <Shift>+<F10> 8-32
Pop-up menu, structure editor <shift>+<F10> 5-26
Preparation for control of an INTERBUS 13-27
Deletion of steps, transitions, actions 8-28
Print 4-9
Print <Ctrl>+<P> 4-9
Print compound of resource yy 4-10
Print compound xx 4-9
Print options 4-10
Print Options - (Footer) 4-12
Print Options - (Logo) 4-12
Print Options – Content of the printout (Contents) 4-11
Print Options - View of all editors (All) 4-13
Print options, action block editor (AB) 4-17
Print options, arrays) 4-19
Print options, cross reference list (CRL) 4-18
Print options, declaration editor (DECL) 4-15
Print options, imports 4-20
Print options, instruction list editor (IL) 4-15
Print options, IO editor (IO) 4-16
Print Options, ladder diagram (LD) 4-14
Print options, SFC list (SFC) 4-16
Print options, SFCL list (SFCL) 4-17
Print options, structures 4-19
Print rungs (LD/IL) 4-10
Print xx 4-9
Printer selection 4-20
PRIORITY, Tasks 14-5
PROFIBUS 4-92
PROFIBUS DP, data types 11-17
PROFIBUS DP, function blocks 13-57
PROFIBUS DP, functions 12-62
Program example for control of a PROFIBUS 13-59
Program example for control of an INTERBUS 13-36
Program example for control of serial interfaces 13-70
Program example for starting and stopping the PROFIBUS 12-63
Program example for user function SELECT_INT 12-77
Program example of analog module RMC12.2-E-1A 12-60
Program example of execution of a task 14-7
Program example of HMI link via GUI_SK16 13-77
Program example of the Scara SFC 8-10
Program instances, tasks 14-6
Programming a ProVi message 4-76
Programming an SFC diagnosis 4-81
Programming guidelines for SFC diagnosis messages 4-83

WinPCL 06VRS Index 18-11

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Programs, general information 14-1
Properties 4-6
ProVi messages 4-75

R
R, action qualifier 9-23
REAL 11-5
Real Literal 11-2
Reject_Indication for PCP blocks 13-54
Remote programming 4-109
Remote programming rules 4-111
Remote programming, activities on the client side 4-110
Remote programming, activities on the server side 4-109
Remote programming, archives 4-111
Remote programming, firmware download 4-111
Remote programming, user management, WinPCL rights 4-112
Replace <Ctrl>+<H> 4-31
RES, IL 6-25
RESC, IL 6-25
RESCN, IL 6-25
Reset 4-53
Resources 14-4
Restrictions to the import of CMD files 10-18
Restrictions to the import of CMD files in case of device-oriented assignment 10-
19
Restrictions to the import of CMD files in case of segment-oriented assignment
10-18
RET, IL 6-32
Retain Area

Limitation of the Declaration of Function Blocks 13-94
RETC, IL 6-32
RETCN, IL 6-32

S
S#ErrorFlg 15-1
S#ErrorTyp 15-5
S, action qualifier 9-16
Safety Instructions for Electric Drives and Controls 3-1
Save 4-5
Save as 4-6
SD, action qualifier 9-21
Search and replace, action block editor 9-30
Search and replace, declaration editor 5-13
Search and replace, IL editor 6-21
Search and replace, ladder diagram editor 7-36
Search and replace, sequential function chart 8-33
Search in compound, diagnosis 4-32
Search in compound, Global cross reference 4-32
Search in compound, Write on input addresses 4-32
SEG_OFF 13-31
SEG_ON 13-32
Selecting the variant for the control xx 4-5
Selection of current control 4-4
Selection of the current resource 4-48
Sequential function chart, data types 11-20
Serial interfaces - function blocks 13-62
Serial interfaces, COM data type 11-14
Service 4-105
Set and reset commands (bit operands only), IL 6-25
SET, IL 6-25
SETC, IL 6-25
SETCN, AWL 6-25
Setting the measuring ranges - analog module 12-55
Setup support on action block level 9-24
SFC diagnosis 4-81
SFC elements 8-1
SFC list 9-10
SFC list with example 8-18

18-12 Index WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

SINT 11-5
SL, action qualifier 9-22
Special 4-104
ST, IL 6-24
Standard data types 11-5
Standard function blocks 13-2
Standard functions 12-2
Start 4-49
Start of the PLC 14-12
START_D 13-34
Status - pictograms 4-118
Status ARRAYs / Structures<Shift>+<F3> 4-57
Status display in the action block editor 9-27
Status display in the declaration editor 5-9
Status display in the ladder diagram editor 7-30
Status display in the sequential function chart 8-30
Status display, IL editor 6-12
Step 8-1
STEP 8-1
Step list 8-9
STN, IL 6-24
STOP_D 13-33
STRING 11-5
STRUCT 11-8
Structure of a ladder diagram 7-1
Structure of an action block 9-2
Structure of an instruction list line 6-1
Structure of the declaration lines 5-16, 5-19, 5-21, 5-23
Structure of the declaration of arrays (example) 5-27
Structure of the declaration of structures (example) 5-25
Structure of the declaration part 5-2
Structure of the declaration part of a function (example) 5-24
Structure of the declaration part of a program (example) 5-20
Structure of the declaration part of a resource (example) 5-17
SUB 6-34
SUB(, IL 6-32
Subsequent modifications and extensions in the ladder diagram 7-16
System data for actions and action blocks 9-11
System data of a step 8-2

T
Tasks 14-5
Tasks, time diagrams of the execution 14-6
TEMPLATES 4-26, 13-27, 13-29
Temporary flags, ladder diagram 7-16
Text modifications in an action block 9-9
Tile windows horizontally 4-100
Tile windows vertically 4-101
TIME 11-5
Time Literal 11-3
Time of Day

Literals 11-3
Time steps for pulses, on-delay and off-delay timer function blocks 13-18
Time-controlled task 14-7
Tools 4-59
Transition list 8-9
Transitions 8-3

U
UDINT 11-5
UINT 11-5
ULINT 11-5
Underline character 11-1, 11-2
Up-down counter 13-11
Use See appropriate use and inappropriate use
User data types 11-23
User function blocks 13-93
User functions 12-76

WinPCL 06VRS Index 18-13

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

User management, WinPCL rights, remote programming 4-112
USINT 11-5

V
Varying color in the SFC editor 8-29
Vertical connection lines 7-1
View 4-33
Viewing the SFC in the SFC list 8-18

W
Warm start 14-12
white space 11-1
Window 4-98
WinPCL options, action block editor 4-65
WinPCL options, all editors 4-61
WinPCL options, Compile 4-67
WinPCL options, Cross reference list 4-66
WinPCL options, Debug 4-68
WinPCL options, declaration editor 4-63
WinPCL options, desktop 4-60
WinPCL options, download 4-68
WinPCL options, instruction list 4-63
WinPCL options, IO editor 4-64
WinPCL options, ladder diagram 4-62
WinPCL options, sequential function chart (SFC) 4-64
WinPCL options, SFC list 4-65
WORD 11-5
Write on inputs %I 4-8

X
XOR 6-28
XOR(, IL 6-28
XORN(, IL 6-28
XORN, IL 6-28

18-14 Index WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

WinPCL 06VRS Service & Support 19-1

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

19 Service & Support

19.1 Helpdesk

Unser Kundendienst-Helpdesk im Hauptwerk Lohr
am Main steht Ihnen mit Rat und Tat zur Seite.
Sie erreichen uns

Our service helpdesk at our headquarters in Lohr am
Main, Germany can assist you in all kinds of inquiries.
Contact us

- telefonisch - by phone: 49 (0) 9352 40 50 60
über Service Call Entry Center Mo-Fr 07:00-18:00
- via Service Call Entry Center Mo-Fr 7:00 am - 6:00 pm

- per Fax - by fax: +49 (0) 9352 40 49 41

- per e-Mail - by e-mail: service.svc@boschrexroth.de

19.2 Service-Hotline

Außerhalb der Helpdesk-Zeiten ist der Service
direkt ansprechbar unter

After helpdesk hours, contact our service
department directly at

+49 (0) 171 333 88 26

oder - or +49 (0) 172 660 04 06

19.3 Internet

Unter www.boschrexroth.com finden Sie
ergänzende Hinweise zu Service, Reparatur und
Training sowie die aktuellen Adressen *) unserer
auf den folgenden Seiten aufgeführten Vertriebs-
und Servicebüros.

Verkaufsniederlassungen

Niederlassungen mit Kundendienst

Außerhalb Deutschlands nehmen Sie bitte zuerst Kontakt mit
unserem für Sie nächstgelegenen Ansprechpartner auf.

*) Die Angaben in der vorliegenden Dokumentation können
seit Drucklegung überholt sein.

At www.boschrexroth.com you may find
additional notes about service, repairs and training
in the Internet, as well as the actual addresses *)
of our sales- and service facilities figuring on the
following pages.

sales agencies

offices providing service

Please contact our sales / service office in your area first.

*) Data in the present documentation may have become
obsolete since printing.

19.4 Vor der Kontaktaufnahme... - Before contacting us...

Wir können Ihnen schnell und effizient helfen wenn
Sie folgende Informationen bereithalten:

1. detaillierte Beschreibung der Störung und der
Umstände.

2. Angaben auf dem Typenschild der
betreffenden Produkte, insbesondere
Typenschlüssel und Seriennummern.

3. Tel.-/Faxnummern und e-Mail-Adresse, unter
denen Sie für Rückfragen zu erreichen sind.

For quick and efficient help, please have the
following information ready:

1. Detailed description of the failure and
circumstances.

2. Information on the type plate of the affected
products, especially type codes and serial
numbers.

3. Your phone/fax numbers and e-mail address,
so we can contact you in case of questions.

19-2 Service & Support WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

19.5 Kundenbetreuungsstellen - Sales & Service Facilities

Deutschland – Germany vom Ausland: (0) nach Landeskennziffer weglassen!
from abroad: don’t dial (0) after country code!

Vertriebsgebiet Mitte
 Germany Centre

Rexroth Indramat GmbH
Bgm.-Dr.-Nebel-Str. 2 / Postf. 1357
97816 Lohr am Main / 97803 Lohr

Kompetenz-Zentrum Europa

Tel.: +49 (0)9352 40-0
Fax: +49 (0)9352 40-4885

S E R V I C E

C A L L E N T R Y C E N T E R
MO – FR

von 07:00 - 18:00 Uhr

from 7 am – 6 pm

Tel. +49 (0) 9352 40 50 60
service.svc@boschrexroth.de

S E R V I C E

H O T L IN E
MO – FR

von 17:00 - 07:00 Uhr
from 5 pm - 7 am

+ SA / SO
Tel.: +49 (0)172 660 04 06

o d e r / o r
Tel.: +49 (0)171 333 88 26

S E R V I C E

ERSATZTEILE / SPARES
verlängerte Ansprechzeit
- extended office time -

♦ nur an Werktagen
- only on working days -

♦ von 07:00 - 18:00 Uhr
- from 7 am - 6 pm -

Tel. +49 (0) 9352 40 42 22

Vertriebsgebiet Süd
 Germany South

Bosch Rexroth AG
Landshuter Allee 8-10
80637 München

Tel.: +49 (0)89 127 14-0
Fax: +49 (0)89 127 14-490

Vertriebsgebiet West
 Germany West

Bosch Rexroth AG
Regionalzentrum West
Borsigstrasse 15
40880 Ratingen

Tel.: +49 (0)2102 409-0
Fax: +49 (0)2102 409-406

+49 (0)2102 409-430

Gebiet Südwest
 Germany South-West

Bosch Rexroth AG
Service-Regionalzentrum Süd-West
Siemensstr.1
70736 Fellbach

Tel.: +49 (0)711 51046–0
Fax: +49 (0)711 51046–248

Vertriebsgebiet Nord
 Germany North

Bosch Rexroth AG
Walsroder Str. 93
30853 Langenhagen

Tel.: +49 (0) 511 72 66 57-0
Service: +49 (0) 511 72 66 57-256
Fax: +49 (0) 511 72 66 57-93
Service: +49 (0) 511 72 66 57-783

Vertriebsgebiet Mitte
 Germany Centre

Bosch Rexroth AG
Regionalzentrum Mitte
Waldecker Straße 13
64546 Mörfelden-Walldorf

Tel.: +49 (0) 61 05 702-3
Fax: +49 (0) 61 05 702-444

Vertriebsgebiet Ost
 Germany East

Bosch Rexroth AG
Beckerstraße 31
09120 Chemnitz

Tel.: +49 (0)371 35 55-0
Fax: +49 (0)371 35 55-333

Vertriebsgebiet Ost
 Germany East

Bosch Rexroth AG
Regionalzentrum Ost
Walter-Köhn-Str. 4d
04356 Leipzig

Tel.: +49 (0)341 25 61-0
Fax: +49 (0)341 25 61-111

WinPCL 06VRS Service & Support 19-3

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Europa (West) - Europe (West)

vom Ausland: (0) nach Landeskennziffer weglassen, Italien: 0 nach Landeskennziffer mitwählen
from abroad: don’t dial (0) after country code, Italy: dial 0 after country code

Austria - Österreich

Bosch Rexroth GmbH
Electric Drives & Controls
Stachegasse 13
1120 Wien

Tel.: +43 (0)1 985 25 40
Fax: +43 (0)1 985 25 40-93

Austria – Österreich

Bosch Rexroth GmbH
Electric Drives & Controls
Industriepark 18
4061 Pasching

Tel.: +43 (0)7221 605-0
Fax: +43 (0)7221 605-21

Belgium - Belgien

Bosch Rexroth AG
Electric Drives & Controls
Industrielaan 8
1740 Ternat
Tel.: +32 (0)2 5830719
- service: +32 (0)2 5830717
Fax: +32 (0)2 5830731
 service@boschrexroth.be

Denmark - Dänemark

BEC A/S
Zinkvej 6
8900 Randers

Tel.: +45 (0)87 11 90 60
Fax: +45 (0)87 11 90 61

Great Britain – Großbritannien

Bosch Rexroth Ltd.
Electric Drives & Controls
Broadway Lane, South Cerney
Cirencester, Glos GL7 5UH

Tel.: +44 (0)1285 863000
Fax: +44 (0)1285 863030
 sales@boschrexroth.co.uk
 service@boschrexroth.co.uk

Finland - Finnland

Bosch Rexroth Oy
Electric Drives & Controls
Ansatie 6
017 40 Vantaa

Tel.: +358 (0)9 84 91-11
Fax: +358 (0)9 84 91-13 60

France - Frankreich

Bosch Rexroth SAS
Electric Drives & Controls
Avenue de la Trentaine
(BP. 74)
77503 Chelles Cedex

Tel.: +33 (0)164 72-70 00
Fax: +33 (0)164 72-63 00
Hotline: +33 (0)608 33 43 28

France - Frankreich

Bosch Rexroth SAS
Electric Drives & Controls
ZI de Thibaud, 20 bd. Thibaud
(BP. 1751)
31084 Toulouse

Tel.: +33 (0)5 61 43 61 87
Fax: +33 (0)5 61 43 94 12

France – Frankreich

Bosch Rexroth SAS
Electric Drives & Controls
91, Bd. Irène Joliot-Curie
69634 Vénissieux – Cedex
Tel.: +33 (0)4 78 78 53 65
Fax: +33 (0)4 78 78 53 62

Italy - Italien

Bosch Rexroth S.p.A.
Via G. Di Vittoria, 1
20063 Cernusco S/N.MI

Tel.: +39 02 92 365 1
+39 02 92 365 326

Fax: +39 02 92 365 500
+39 02 92 365 516378

Italy - Italien

Bosch Rexroth S.p.A.
Via Paolo Veronesi, 250
10148 Torino

Tel.: +39 011 224 88 11
Fax: +39 011 224 88 30

Italy - Italien

Bosch Rexroth S.p.A.
Via del Progresso, 16 (Zona Ind.)
35020 Padova

Tel.: +39 049 8 70 13 70
Fax: +39 049 8 70 13 77

Italy - Italien

Bosch Rexroth S.p.A.
Via Mascia, 1
80053 Castellamare di Stabia NA

Tel.: +39 081 8 71 57 00
Fax: +39 081 8 71 68 85

Italy - Italien

Bosch Rexroth S.p.A.
Via Isonzo, 61
40033 Casalecchio di Reno (Bo)

Tel.: +39 051 29 86 430
Fax: +39 051 29 86 490

Netherlands - Niederlande/Holland

Bosch Rexroth Services B.V.
Technical Services
Kruisbroeksestraat 1
(P.O. Box 32)
5281 RV Boxtel
Tel.: +31 (0) 411 65 16 40

+31 (0) 411 65 17 27
Fax: +31 (0) 411 67 78 14

+31 (0) 411 68 28 60
services@boschrexroth.nl

Netherlands – Niederlande/Holland

Bosch Rexroth B.V.
Kruisbroeksestraat 1
(P.O. Box 32)
5281 RV Boxtel

Tel.: +31 (0) 411 65 19 51
Fax: +31 (0) 411 65 14 83
 www.boschrexroth.nl

Norway - Norwegen

Bosch Rexroth AS
Electric Drives & Controls
Berghagan 1 or: Box 3007
1405 Ski-Langhus 1402 Ski

Tel.: +47 (0)64 86 41 00
Fax: +47 (0)64 86 90 62
 jul.ruud@rexroth.no

Spain - Spanien

Bosch Rexroth S.A.
Electric Drives & Controls
Centro Industrial Santiga
Obradors s/n
08130 Santa Perpetua de Mogoda
Barcelona

Tel.: +34 9 37 47 94 00
Fax: +34 9 37 47 94 01

Spain – Spanien

Goimendi S.A.
Electric Drives & Controls
Parque Empresarial Zuatzu
C/ Francisco Grandmontagne no.2
20018 San Sebastian

Tel.: +34 9 43 31 84 21
- service: +34 9 43 31 84 56
Fax: +34 9 43 31 84 27
- service: +34 9 43 31 84 60
 sat.indramat@goimendi.es

Sweden - Schweden

Bosch Rexroth AB
Electric Drives & Controls
- Varuvägen 7
(Service: Konsumentvägen 4, Älfsjö)
125 81 Stockholm

Tel.: +46 (0)8 727 92 00
Fax: +46 (0)8 647 32 77

Sweden - Schweden

Bosch Rexroth AB
Electric Drives & Controls
Ekvändan 7
254 67 Helsingborg
Tel.: +46 (0) 42 38 88 -50
Fax: +46 (0) 42 38 88 -74

Switzerland West - Schweiz West

Bosch Rexroth Suisse SA
Electric Drives & Controls
Rue du village 1
1020 Renens
Tel.: +41 (0)21 632 84 20
Fax: +41 (0)21 632 84 21

Switzerland East - Schweiz Ost

Bosch Rexroth Schweiz AG
Electric Drives & Controls
Hemrietstrasse 2
8863 Buttikon
Tel. +41 (0) 55 46 46 111
Fax +41 (0) 55 46 46 222

19-4 Service & Support WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Europa (Ost) - Europe (East)

vom Ausland: (0) nach Landeskennziffer weglassen
from abroad: don’t dial (0) after country code

Czech Republic - Tschechien

Bosch -Rexroth, spol.s.r.o.
Hviezdoslavova 5
627 00 Brno

Tel.: +420 (0)5 48 126 358
Fax: +420 (0)5 48 126 112

Czech Republic - Tschechien

DEL a.s.
Strojírenská 38
591 01 Zdar nad Sázavou
Tel.: +420 566 64 3144
Fax: +420 566 62 1657

Hungary - Ungarn

Bosch Rexroth Kft.
Angol utca 34
1149 Budapest

Tel.: +36 (1) 422 3200
Fax: +36 (1) 422 3201

Poland – Polen

Bosch Rexroth Sp.zo.o.
ul. Staszica 1
05-800 Pruszków

Tel.: +48 22 738 18 00
– service: +48 22 738 18 46
Fax: +48 22 758 87 35
– service: +48 22 738 18 42

Poland – Polen

Bosch Rexroth Sp.zo.o.
Biuro Poznan
ul. Dabrowskiego 81/85
60-529 Poznan

Tel.: +48 061 847 64 62 /-63
Fax: +48 061 847 64 02

Romania - Rumänien

East Electric S.R.L.
Bdul Basarabia no.250, sector 3
73429 Bucuresti

Tel./Fax:: +40 (0)21 255 35 07
+40 (0)21 255 77 13

Fax: +40 (0)21 725 61 21
 eastel@rdsnet.ro

Romania - Rumänien

Bosch Rexroth Sp.zo.o.
Str. Drobety nr. 4-10, app. 14
70258 Bucuresti, Sector 2

Tel.: +40 (0)1 210 48 25
+40 (0)1 210 29 50

Fax: +40 (0)1 210 29 52

Russia - Russland

Bosch Rexroth OOO
Wjatskaja ul. 27/15
127015 Moskau

Tel.: +7-095-785 74 78
+7-095 785 74 79

Fax: +7 095 785 74 77
 laura.kanina@boschrexroth.ru

Russia - Russland

ELMIS
10, Internationalnaya
246640 Gomel, Belarus
Tel.: +375/ 232 53 42 70

+375/ 232 53 21 69
Fax: +375/ 232 53 37 69
 elmis_ltd@yahoo.com

Turkey - Türkei

Bosch Rexroth Otomasyon
San & Tic. A..S.
Fevzi Cakmak Cad No. 3
34295 Sefaköy - Istanbul
Tel.: +90 212 413 34-00
Fax: +90 212 413 34-17

Slowenia - Slowenien

DOMEL
Otoki 21
64 228 Zelezniki
Tel.: +386 5 5117 152
Fax: +386 5 5117 225
 brane.ozebek@domel.si

WinPCL 06VRS Service & Support 19-5

DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Africa, Asia, Australia – incl. Pacific Rim

Australia - Australien

AIMS - Australian Industrial
Machinery Services Pty. Ltd.
28 Westside Drive
Laverton North Vic 3026
Melbourne

Tel.: +61 3 93 59 0228
Fax: +61 3 93 59 0286
Hotline: +61 4 19 369 195
 terryobrien@aimservices.com.au

Australia - Australien

Bosch Rexroth Pty. Ltd.
No. 7, Endeavour Way
Braeside Victoria, 31 95
Melbourne

Tel.: +61 3 95 80 39 33
Fax: +61 3 95 80 17 33
 mel@rexroth.com.au

China

Shanghai Bosch Rexroth
Hydraulics & Automation Ltd.
Waigaoqiao, Free Trade Zone
No.122, Fu Te Dong Yi Road
Shanghai 200131 - P.R.China

Tel.: +86 21 58 66 30 30
Fax: +86 21 58 66 55 23
richard.yang_sh@boschrexroth.com.cn
 gf.zhu_sh@boschrexroth.com.cn

China

Shanghai Bosch Rexroth
Hydraulics & Automation Ltd.
4/f, Marine Tower
No.1, Pudong Avenue
Shanghai 200120 - P.R.China

Tel: +86 21 68 86 15 88
Fax: +86 21 58 40 65 77

China

Bosch Rexroth China Ltd.
15/F China World Trade Center
1, Jianguomenwai Avenue
Beijing 100004, P.R.China

Tel.: +86 10 65 05 03 80
Fax: +86 10 65 05 03 79

China

Bosch Rexroth China Ltd.
Guangzhou Repres. Office
Room 1014-1016, Metro Plaza,
Tian He District, 183 Tian He Bei Rd
Guangzhou 510075, P.R.China

Tel.: +86 20 8755-0030
+86 20 8755-0011

Fax: +86 20 8755-2387

China

Bosch Rexroth (China) Ltd.
A-5F., 123 Lian Shan Street
Sha He Kou District
Dalian 116 023, P.R.China

Tel.: +86 411 46 78 930
Fax: +86 411 46 78 932

China

Melchers GmbH
BRC-SE, Tightening & Press-fit
13 Floor Est Ocean Centre
No.588 Yanan Rd. East
65 Yanan Rd. West
Shanghai 200001

Tel.: +86 21 6352 8848
Fax: +86 21 6351 3138

Hongkong

Bosch Rexroth (China) Ltd.
6th Floor,
Yeung Yiu Chung No.6 Ind Bldg.
19 Cheung Shun Street
Cheung Sha Wan,
Kowloon, Hongkong

Tel.: +852 22 62 51 00
Fax: +852 27 41 33 44

alexis.siu@boschrexroth.com.hk

India - Indien

Bosch Rexroth (India) Ltd.
Electric Drives & Controls
Plot. No.96, Phase III
Peenya Industrial Area
Bangalore – 560058

Tel.: +91 80 51 17 0-211...-218
Fax: +91 80 83 94 345

+91 80 83 97 374

 mohanvelu.t@boschrexroth.co.in

India - Indien

Bosch Rexroth (India) Ltd.
Electric Drives & Controls
Advance House, II Floor
Ark Industrial Compound
Narol Naka, Makwana Road
Andheri (East), Mumbai - 400 059

Tel.: +91 22 28 56 32 90
+91 22 28 56 33 18

Fax: +91 22 28 56 32 93

singh.op@boschrexroth.co.in

India - Indien

Bosch Rexroth (India) Ltd.
S-10, Green Park Extension
New Delhi – 110016

Tel.: +91 11 26 56 65 25
+91 11 26 56 65 27

Fax: +91 11 26 56 68 87

koul.rp@boschrexroth.co.in

Indonesia - Indonesien

PT. Bosch Rexroth
Building # 202, Cilandak
Commercial Estate
Jl. Cilandak KKO, Jakarta 12560

Tel.: +62 21 7891169 (5 lines)
Fax: +62 21 7891170 - 71

Japan

Bosch Rexroth Automation Corp.
Service Center Japan
Yutakagaoka 1810, Meito-ku,
NAGOYA 465-0035, Japan

Tel.: +81 52 777 88 41
+81 52 777 88 53
+81 52 777 88 79

Fax: +81 52 777 89 01

Japan

Bosch Rexroth Automation Corp.
Electric Drives & Controls
1F, I.R. Building
Nakamachidai 4-26-44, Tsuzuki-ku
YOKOHAMA 224-0041, Japan

Tel.: +81 45 942 72 10
Fax: +81 45 942 03 41

Korea

Bosch Rexroth-Korea Ltd.
Electric Drives and Controls
Bongwoo Bldg. 7FL, 31-7, 1Ga
Jangchoong-dong, Jung-gu
Seoul, 100-391

Tel.: +82 234 061 813
Fax: +82 222 641 295

Korea

Bosch Rexroth-Korea Ltd.
1515-14 Dadae-Dong, Saha-Ku
Electric Drives & Controls
Pusan Metropolitan City, 604-050

Tel.: +82 51 26 00 741
Fax: +82 51 26 00 747
 gyhan@rexrothkorea.co.kr

Malaysia

Bosch Rexroth Sdn.Bhd.
11, Jalan U8/82, Seksyen U8
40150 Shah Alam
Selangor, Malaysia

Tel.: +60 3 78 44 80 00
Fax: +60 3 78 45 48 00
 hockhwa@hotmail.com
 rexroth1@tm.net.my

Singapore - Singapur

Bosch Rexroth Pte Ltd
15D Tuas Road
Singapore 638520

Tel.: +65 68 61 87 33
Fax: +65 68 61 18 25
 sanjay.nemade

@boschrexroth.com.sg

South Africa - Südafrika

TECTRA Automation (Pty) Ltd.
71 Watt Street, Meadowdale
Edenvale 1609

Tel.: +27 11 971 94 00
Fax: +27 11 971 94 40
Hotline: +27 82 903 29 23
 georgv@tectra.co.za

Taiwan

Bosch Rexroth Co., Ltd.
Taichung Branch
1F., No. 29, Fu-Ann 5th Street,
Xi-Tun Area, Taichung City
Taiwan, R.O.C.

Tel : +886 - 4 -23580400
Fax: +886 - 4 -23580402
charlie.chen@boschrexroth.com.
tw
jim.lin@boschrexroth.com.tw
david.lai@boschrexroth.com.tw

Thailand

NC Advance Technology Co. Ltd.
59/76 Moo 9
Ramintra road 34
Tharang, Bangkhen,
Bangkok 10230

Tel.: +66 2 943 70 62
 +66 2 943 71 21
Fax: +66 2 509 23 62
 sonkawin@hotmail.com

19-6 Service & Support WinPCL 06VRS

 DOK-CONTRL-WINPCL*06VRS-AW01-EN-P

Nordamerika – North America
USA
Headquarters - Hauptniederlassung

Bosch Rexroth Corporation
Electric Drives & Controls
5150 Prairie Stone Parkway
Hoffman Estates, IL 60192-3707

Tel.: +1 847 6 45 36 00
Fax: +1 847 6 45 62 01
servicebrc@boschrexroth-us.com
 repairbrc@boschrexroth-us.com

USA Central Region - Mitte

Bosch Rexroth Corporation
Electric Drives & Controls
Central Region Technical Center
1701 Harmon Road
Auburn Hills, MI 48326

Tel.: +1 248 3 93 33 30
Fax: +1 248 3 93 29 06

USA Southeast Region - Südwest

Bosch Rexroth Corporation
Electric Drives & Controls
Southeastern Technical Center
3625 Swiftwater Park Drive
Suwanee, Georgia 30124

Tel.: +1 770 9 32 32 00
Fax: +1 770 9 32 19 03

USA SERVICE-HOTLINE

- 7 days x 24hrs -

+1-800-REX-ROTH
+1-800-739-7684

USA East Region – Ost

Bosch Rexroth Corporation
Electric Drives & Controls
Charlotte Regional Sales Office
14001 South Lakes Drive
Charlotte, North Carolina 28273

Tel.: +1 704 5 83 97 62
+1 704 5 83 14 86

USA Northeast Region – Nordost

Bosch Rexroth Corporation
Electric Drives & Controls
Northeastern Technical Center
99 Rainbow Road
East Granby, Connecticut 06026

Tel.: +1 860 8 44 83 77
Fax: +1 860 8 44 85 95

USA West Region – West

Bosch Rexroth Corporation
7901 Stoneridge Drive, Suite 220
Pleasant Hill, California 94588

Tel.: +1 925 227 10 84
Fax: +1 925 227 10 81

Canada East - Kanada Ost

Bosch Rexroth Canada Corporation
Burlington Division
3426 Mainway Drive
Burlington, Ontario
Canada L7M 1A8

Tel.: +1 905 335 55 11
Fax: +1 905 335-41 84
 michael.moro@boschrexroth.ca

Canada West - Kanada West

Bosch Rexroth Canada Corporation
5345 Goring St.
Burnaby, British Columbia
Canada V7J 1R1

Tel. +1 604 205-5777
Fax +1 604 205-6944
 david.gunby@boschrexroth.ca

Mexico

Bosch Rexroth Mexico S.A. de C.V.
Calle Neptuno 72
Unidad Ind. Vallejo
07700 Mexico, D.F.

Tel.: +52 55 57 54 17 11
Fax: +52 55 57 54 50 73
mariofelipe.hernandez@boschrexroth.com.mx

Mexico

Bosch Rexroth S.A. de C.V.
Calle Argentina No 3913
Fracc. las Torres
64930 Monterrey, N.L.

Tel.: +52 81 83 65 22 53
+52 81 83 65 89 11
+52 81 83 49 80 91

Fax: +52 81 83 65 52 80
mario.quiroga@boschrexroth.com.mx

Südamerika – South America
Argentina - Argentinien

Bosch Rexroth S.A.I.C.
"The Drive & Control Company"
Acassusso 48 41/47
1605 Munro
Provincia de Buenos Aires

Tel.: +54 11 4756 01 40
Fax: +54 11 4756 01 36
victor.jabif@boschrexroth.com.ar

Argentina - Argentinien

NAKASE
Servicio Tecnico CNC
Calle 49, No. 5764/66
B1653AOX Villa Balester
Provincia de Buenos Aires

Tel.: +54 11 4768 36 43
Fax: +54 11 4768 24 13
 nakase@usa.net
 nakase@nakase.com
 gerencia@nakase.com (Service)

Brazil - Brasilien

Bosch Rexroth Ltda.
Av. Tégula, 888
Ponte Alta, Atibaia SP
CEP 12942-440

Tel.: +55 11 4414 56 92
+55 11 4414 56 84

Fax sales: +55 11 4414 57 07
Fax serv.: +55 11 4414 56 86
 alexandre.wittwer@rexroth.com.br

Brazil - Brasilien

Bosch Rexroth Ltda.
R. Dr.Humberto Pinheiro Vieira, 100
Distrito Industrial [Caixa Postal 1273]
89220-390 Joinville - SC

Tel./Fax: +55 47 473 58 33
Mobil: +55 47 9974 6645
 prochnow@zaz.com.br

Columbia - Kolumbien

Reflutec de Colombia Ltda.
Calle 37 No. 22-31
Santafé de Bogotá, D.C.
Colombia

Tel.: +57 1 368 82 67
+57 1 368 02 59

Fax: +57 1 268 97 37
reflutec@neutel.com.co
reflutec@007mundo.com

Bosch Rexroth AG
Electric Drives and Controls
Bgm.-Dr.-Nebel-Str. 2
97816 Lohr a. Main, Germany
info@boschrexroth.de
www.boschrexroth.de

Printed in Germany
DOK-CONTRL-WINPCL*06VRS-AW01-EN-P298446

	Titel
	About this Documentation
	Contents
	1 Preliminary Remarks
	1.1 Contents of this Documentation
	1.2 Further Documentation

	2 Important Directions for Use
	2.1 Appropriate Use
	Introduction
	Areas of Use and Application

	2.2 Inappropriate Use
	2.3 Delivery Stipulations for Computer Programs

	3 Safety Instructions for Electric Drives and Controls
	3.1 Introduction
	3.2 Explanations
	3.3 Hazards by Improper Use
	3.4 General Information
	3.5 Protection Against Contact with Electrical Parts
	3.6 Protection Against Electric Shock by Protective Low Voltage (PELV)
	3.7 Protection Against Dangerous Movements
	3.8 Protection Against Magnetic and Electromagnetic Fields During Operation and Mounting
	3.9 Protection Against Contact with Hot Parts
	3.10 Protection During Handling and Mounting
	3.11 Battery Safety
	3.12 Protection Against Pressurized Systems

	4 WinPCL
	4.1 Main Menu Line
	4.2 File
	New
	Open
	Selecting the Current Control
	Selecting the Variant for a Control "xx"
	Save
	Save as
	Save all
	Properties
	Print
	Archive
	Import
	Export
	Exit

	4.3 Edit
	Cut <Ctrl>+<X>
	Copy <Ctrl>+<C>
	Insert <Ctrl>+<V>
	Delete
	Find <Ctrl>+<F>
	Find Next <Ctrl>+<R>
	Replace <Ctrl>+<H>
	Search in Compound

	4.4 View
	Project Navigator
	Cross Reference List (and Cross Reference Help)
	Import <Ctrl>+<F2>

	4.5 Compiler
	Selection of the Current Resource

	4.6 Start
	Download "xx" in Control "yy" <Ctrl>+<F9>
	Save PLC Memory
	Display of Variable Values
	Reset PLC
	Variable Values
	Force <Shift>+<F8>
	Status ARRAYs / Structures<Shift>+<F3>

	4.7 Tools
	Options
	PLC Information
	Memory Requirements for Compound
	Event Display
	Display of System Errors
	Miniature Control Panels
	Diagnosis, Module Assignment
	Password
	Fieldbus Configuration
	Logic Analysis
	File-File Comparison

	4.8 Window
	Close
	Close All
	Cascade
	Tile Horizontally
	Tile Vertically
	Minimize All Windows
	List of Windows

	4.9 ? Help
	Help <F1>
	Help Topics (Contents & Index)
	Special
	Internals
	Service
	Info About WinPCL
	Info
	Help on a Particular Error <Ctrl>+<F1>
	Help on Declaration <Shift>+<F1>

	4.10 Miscellaneous
	Language Conversion
	Remote Programming
	User Management, WinPCL Rights, Remote Programming

	4.11 Keys and Key Combinations
	F Keys and Their Alt / Ctrl / Shift Combinations
	Alt-Key Combinations
	Ctrl-Key Combinations

	4.12 Pictograms

	5 Declaration Editors
	5.1 General Notes on the Declaration Editors
	5.2 Structure of the Declaration Part
	Editing Features, Varying Font Color in the Declaration Editor
	Declaration Footer Commands
	Status Display in the Declaration Editor
	Declaration Editor Options
	Pop-up Menu, Declaration Editor <Shift>+<F10>
	Block Commands, Declaration Editor
	Search and Replace, Declaration Editor
	Finding and Deleting Unused Declarations
	Cross Reference List, Declaration Editor
	Documentation, Declaration

	5.3 Declaration, Resource
	Areas in the Declaration Editor (Resource)
	Structure of the Declaration Lines
	Declaration Footer Commands, Resource Level
	Other Keys and Key Combinations
	Structure of the Declaration Part of a Resource (Example)

	5.4 Declaration, Program
	Areas in the Declaration Editor (Program)
	Structure of the Declaration Lines
	Declaration Footer Commands, Program Level
	Other Keys and Key Combinations
	Structure of the Declaration Part of a Program (Example)

	5.5 Declaration, Function Block
	Areas in the Declaration Editor (Function Block)
	Structure of the Declaration Lines
	Declaration Footer Commands, Function Block Level
	Other Keys and Key Combinations

	5.6 Declaration, Function
	Areas in the Declaration Editor (Function)
	Structure of the Declaration Lines
	Declaration Footer Commands, Function Level
	Other Keys and Key Combinations
	Structure of the Declaration Part of a Function (Example)

	5.7 Declaration of Structures (STRUCT)
	Structure of the Declaration of Structures (Example)
	Declaration Footer Command, Structure
	Other Keys and Key Combinations
	Pop-up Menu, Structure Editor <Shift>+<F10>

	5.8 Declaration of ARRAYs
	Structure of the Declaration of ARRAYs (Example)
	Declaration Footer Command, ARRAYs
	Other Keys and Key Combinations
	Pop-up Menu - ARRAY / Editor <Shift>+<F10>

	5.9 Limitation of the Declaration of Function Blocks in the Retain Area

	6 Instruction List Editor
	6.1 General Notes on the Instruction List Editor
	6.2 Structure of an Instruction List Line
	Selection Window, Operators
	Selection Window, Functions
	Selection Window, Instances of Function Blocks
	Selection Window, SFCs
	Selection Window, Labels
	Selection Window, Variables
	Selection Window, Absolute Addressed Variables

	6.3 Editing Features, Varying Color in the IL Editor
	6.4 Options, IL Editor
	6.5 Status Display in the IL Editor
	6.6 Online Editing in the Instruction List
	Edge Evaluation in the Instruction List

	6.7 Pop-up Menu, IL Editor <Shift>+<F10>
	6.8 Block Commands, IL Editor
	6.9 Search and Replace, IL Editor
	6.10 Cross Reference List, IL Editor
	6.11 Documentation, IL Editor
	6.12 Instructions of the IL, Table Overview
	6.13 Instructions and Approved Data Types
	Loading and Storing Operations
	Set and Reset Commands (Bit Operands Only)
	Logic Instructions
	Jumps, Calls, Return (Conditional and Unconditional)
	Arithmetic Instructions
	Comparators

	7 Ladder Diagram Editor
	7.1 General Notes on the Ladder Diagram Editor
	7.2 Structure of a Ladder Diagram
	7.3 Editing Ladder Diagrams
	Selection Window, Operators
	Selection Window, Functions
	Selection Window, Instances of Function blocks
	Selection Window, Label
	Selection Window, SFCs
	Selection Window, Variables
	Selection Window, Absolute Addressed Variables

	7.4 Deletion in the Ladder Diagram
	7.5 Editing Features, Varying Color in the Ladder Diagram Editor
	Entry of a Simple Ladder Diagram
	Subsequent Modifications and Extensions in the Ladder Diagram
	Entry of a Ladder Diagram with Additional Symbols
	Edge Contacts and Edge Coils in the Ladder Diagram
	Operators in the Ladder Diagram
	Functions in the Ladder Diagram
	Function Blocks in the Ladder Diagram

	7.6 Options, Ladder Diagram Editor
	7.7 Status Display in the Ladder Diagram Editor
	7.8 Online Editing in the Ladder Diagram
	7.9 Pop-up Menu, LD Editor <Shift>+<F10>
	7.10 Block Commands, LD Editor
	7.11 Search and Replace, Ladder Diagram Editor
	7.12 Cross Reference List, LD Editor
	7.13 Documentation, Ladder Diagram Editor

	8 SFC Editor
	8.1 Basic Sequential Function Chart Elements (SFC Elements)
	Steps
	Transitions
	Oriented Lines
	Alternative SFCs
	Parallel SFCs
	Execution Rules of the Sequential Function Chart

	8.2 Entering SFCs in the SFC Editor
	Opening an SFC in the SFC List
	Program Example of the "Scara" SFC
	Selection Window, Absolute Addressed Variables
	Viewing the SFC in the SFC List
	Entry of the Sequence for Execution in View / Implementation
	Insertion of Steps, Transitions, Branches and Junctions
	Opening Branches
	Deletion of Steps, Transitions and Branches
	Preserving Deleted Steps, Transitions and Actions; Re-use

	8.3 Editing Features, Varying Color in the SFC Editor
	8.4 Status Display in the Sequential Function Chart
	8.5 Options of the Sequential Function Chart
	8.6 Pop-up Menu, Sequential Function Chart <Shift>+<F10>
	8.7 Block Commands, Sequential Function Chart
	8.8 Search and Replace, Sequential Function Chart
	8.9 Cross Reference List, Sequential Function Chart
	8.10 Documentation, Sequential Function Chart

	9 Action Block Editor
	9.1 Action Blocks and Their Operating Principle
	Structure of an Action Block

	9.2 Action Block Editing
	Entering an Action Block, Placing it Behind and Before
	Editing Features, Varying Color in the Action Block Editor
	Deletion of an Action Block
	Text Modifications in an Action Block
	Multiple Use of Actions
	Detail Level of the Action Block Editor
	Actions in the SFC List
	System Data for Actions and Action Blocks
	General Method of Action Execution
	Execution by Action_Control
	Action Qualifiers and their Execution

	9.3 Setup Support on Action Block Level
	Forcing of Actions with System Support
	Status Display in the Action Block Editor

	9.4 Options, Action Block Editor
	9.5 Pop-up Menu, Action Block Editor <Shift>+<F10>
	9.6 Block Commands, Action Blocks
	9.7 Search and Replace, Action Block Editor
	9.8 Cross Reference List, Action Block Editor
	9.9 Documentation, Action Block Editor

	10 I/O Editor
	10.1 General Notes on the I/O Editor
	10.2 Structure of an I/O Editor
	I/O Table
	Structure of the Input Mask in the I/O Editor
	Check for Use of the I/O Areas in Resource and Programs
	Logic Address Assignment by Example of a BT Bus

	10.3 Special Functions of the I/O Editor
	Shifting I/O Addresses
	Applying Configuration Data from CMD to the I/O Editor

	10.4 Status Display, I/O Editor
	10.5 Options, I/O Editor
	10.6 Pop-up Menu, I/O Editor <Shift>+<F10>

	11 Data Types in WinPCL
	11.1 General Agreements
	Character Set
	External Representation of Data

	11.2 Data Types and Initial Values
	11.3 Standard Data Types
	Elementary Data Types, Value Ranges and Initial Values
	Location and size prefix features for directly represented variables
	Extensions to Elementary Data Types

	11.4 Firmware Data Types
	Serial Interfaces, Data Types
	PROFIBUS DP, Data Types
	ASIM, Data Types
	Sequential Function Chart, Data Types

	11.5 User Data Types

	12 Functions in WinPCL
	12.1 Functions, General Information
	12.2 Standard Functions
	Functions for Type and Code Conversion
	Numeric Functions
	Functions for Time-to-Integer Conversion
	INTEGER-to-TIME Conversion
	Bit String Functions
	Character String Functions

	12.3 Firmware Functions
	Analog Module RMC12.2.-2E-1A, Functions
	PROFIBUS DP, Functions
	BT-Bus, Functions
	ASI Bus, Functions
	INTERBUS, Function

	12.4 User Functions
	Import Rules for Functions
	Program Example for User Function SELECT_INT

	13 Function Blocks in WinPCL
	13.1 Function Blocks, General Information
	13.2 Standard Function Blocks
	Bistable Elements
	Edge Evaluation for Rising and Falling Edges
	Collecting / Splitting Bit Strings
	Up-Down Counter
	Time Stages for Pulses, On-Delay and Off-Delay Timer Function Blocks
	Function Blocks for Date and Time

	13.3 Firmware Function Blocks
	INTERBUS, Function Blocks
	PCP Function Blocks for the Parameter Channel of the INTERBUS
	PROFIBUS DP, Function Blocks
	ASI Bus, Function Block with Data Type
	Serial Interfaces, Function Blocks
	Function Blocks for the HMI Interface (GUI_SK16)
	Miniature Control Panels, Function Blocks for Data Exchange with the PLC
	MotionControl Extension of the PLC

	13.4 User Function Blocks
	Import Rules, Function Blocks

	13.5 Limitation of the Declaration of Function Blocks in the Retain Area

	14 Programs and Resources in WinPCL
	14.1 Programs, General Information
	14.2 Resources
	14.3 Tasks, Time Diagrams of the Execution
	14.4 Management of Global and Local Data
	Local Data
	Global Data
	Absolute Data

	14.5 Start of the PLC
	14.6 Initialization of the Data

	15 Error Management
	15.1 S#ErrorFlg
	15.2 Error Management Sequence
	15.3 Error Management in Case of Multiple Errors
	15.4 Error Management in User Files
	15.5 S#ErrorTyp
	15.6 Errors in Functions and Function Blocks
	15.7 Errors in Operations and IL Instructions
	15.8 Errors with REAL Operations in Borderline Cases
	15.9 Sequential Function Chart Errors (SFC)
	15.10 S#ErrorNr

	16 Glossary
	Abbreviations

	17 List of Figures
	18 Index
	19 Service & Support
	19.1 Helpdesk
	19.2 Service-Hotline
	19.3 Internet
	19.4 Vor der Kontaktaufnahme... - Before contacting us...
	19.5 Kundenbetreuungsstellen - Sales & Service Facilities
	Deutschland – Germany
	Europa (West) - Europe (West)
	Europa (Ost) - Europe (East)
	Africa, Asia, Australia – incl. Pacific Rim
	Nordamerika – North America
	Südamerika – South America

